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Abstract. An optimal management of an irrigation network is impor-
tant to ensure an efficient water supply and to predict critical situations
related to natural hazards. We present a multiscale coupling methodol-
ogy to simulate numerically an entire irrigation canal over a distributed
High Performance Computing (HPC) resource. We decompose the net-
work into several segments that are coupled through junctions. Our cou-
pling strategy, based on the concept of Complex Automata (CxA) and the
Multiscale Modeling Language (MML), aims at coupling simple 1D model
of canal sections with 3D complex ones. Our goal is to build a numerical
model that can be run over a distributed grid infrastructure, thus offering
a large amount of computing resources. We illustrate our approach by
coupling two canal sections in 1D through a gate.
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1 Introduction

Canals or rivers are important in populated area as they ensure an adequate
supply of water for agriculture and are a key component of electricity production
or transportation. An optimal management and the control of such resources
can be a critical issue for long term planning or to react to natural hazards. The
major challenge is to define appropriate actions (e.g. opening and closing gates)
that need to be taken to always guarantee an adequate water supply throughout
the canal system, whatever the external demands or perturbations can be, and
respecting constraints such as water height.

This problem can be addressed through numerical optimization methods.
Usually, these methods require the simulation of different scenarios with the
canal network subject to different parameters. Therefore numerical methods able
to simulate the water flow in a full irrigation system are needed. In order to allow
canal operators to respond to real-time events, these methods should compute
fast enough, with good accuracy. Due to the size of an irrigation network and
the large variation in the flow complexity across different sections, a multi-scale,
multi-model computational approach is needed. For instance, some parts of the
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system can be described with simple numerical methods, using the shallow water
equation, whereas other sections need a 3D, free-surface hydrodynamic model
(FS3D) to properly capture the flow properties.

In this paper we propose a methodology to achieve this goal. It follows the
line proposed in the MAPPER project [2], where a set of tools, frameworks,
and methodologies are developed to provide a standard way to build and run
what is defined as multiscale distributed applications. For our specific problem,
we decompose the overall canal network into segments, called submodels, that
will be connected to each other through junctions. There are several reasons that
make this decomposition attractive for our simulation: (i) it gives a flexibility
to easily reconstruct the canal “on the fly” without the need to recode some
submodels; (ii) the different components are reconfigurable and reusable; (iii) it
supports multiscale coupling; (iv) the entire simulation can be efficiently carried
out across distributed clusters, typically using the large computing resources of
the distributed European grid infrastructure.

In this work, we use the Lattice Boltzmann (LB) approach to resolve the
equations modeling a canal segment, and the MML language [11, 8] to describe
the coupling of the different components of the problem.

The paper is organized as follows. After a brief introduction to the LB
method, we describe the coupling strategy and the distributed execution model,
as specified in the CxA and MML frameworks. Then, we explain the algorithm
that allows the coupling of two 1D canal sections interconnected through a gate,
when using the LB method.

2 Lattice Boltzmann method

We briefly present the basic equations of the LB method, which is widely used
for computational fluid dynamics. Further details can be found in several papers
and textbooks (see for instance [18, 9]).

In the LB method, a fluid is described in terms of q density distribution
functions fi(x, t), i = 0, . . . q− 1, where x belongs to a Cartesian grid of spacing
∆x and t is the discrete time, which varies by steps ∆t. From the fi, the fluid
density ρ(x, t) and the velocity field u(x, t) are obtained as ρ =

∑
i fi and

ρu =
∑
i fivi. The vi are velocity vectors associated with each fi, chosen such

that x + ∆tvi is also a point of the computational grid. In LB modeling, the
lattice is denoted as DdQq where d is the spatial dimension of the Cartesian
lattice and q the number of velocity vectors.

In the so-called BGK based LB methods, the density distribution fi(x, t)
are computed as a relaxation towards prescribed local equilibrium functions feqi :
fi(x + ∆tvi, t + ∆t) = fi(x, t) − 1

τ (feqi (x, t) − fi(x, t)), where feq depends on
the physics of the process, and τ is a parameter called the relaxation time. The
above equation can also be expressed as a succession of collision and streaming
steps:

Collision: fouti = f ini − 1
τ (feqi − f in)

Streaming: f ini (x +∆tvi, t+∆t) = fouti (x, t)
(1)
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where f ini (x, t) ≡ fi is the density of particles entering, at time t, site x with
velocity vi; f

out
i is the density of particles with velocity vi at site x after collision.

In the shallow water (SW) model, the fluid is described as columns of water
with height h(x, t) and velocity u(x, t). For solving the SW equation with a LB
approach, fi(x, t) describes the part of the water column at site x and time t
that travels with velocity vi.

The one-dimensional case (SW1D) is illustrated in Fig. 1(a). We use a D1Q3
lattice where grid points are separated by a distance ∆x. Each lattice site
is characterized by three density distributions fi=0..2(x, t), and three velocity
vectors vi={0..2}: v0 = 0, v1 = v, v2 = −v, with v=∆x/∆t. As suggested in

Fig. 1(a), the water level h and the velocity u are then defined as h =
∑3
i=0 fi

and hu =
∑3
i=0 vifi. See for instance [17] for a more detailed description.

The SW1D is sufficient to model a simple canal section where the vertical
and perpendicular flow can be neglected. For more complex simulation, a 3D
free surface model is needed. An example of 3D free surface model is illustrated
in Fig. 1(b), but not further described here (see [5] for more details). In our
approach, such a fully resolved 3D simulation is planned to be coupled with the
above SW1D model. This 1D-3D coupling will be described in a forthcoming
paper. In sect. 4 we rather focus on the specific problem of coupling two 1D
canal segments through a gate.

h(x)

f2
f1

f0

(a) Illustration of the Lattice Boltzmann 1D
Shallow water model (SW1D)

(b) Illustration of the 3D free-surface Lattice
Boltzmann model (FS3D)

Fig. 1. Two numerical models needed for a multiscale simulation of an irrigation canal.

3 Distributed Multi-scale simulations

One of our objective is to simulate the flow in the “canal de la Bourne” in France.
This irrigation network comprises a principal canal (45 km), 4 secondary canals
(85 km) and 27 tertiary canals (400 km). After decomposing the entire system
into segments, the whole simulation will be performed by coupling all the pieces
through junctions. In order to have an acceptable computing time, it is important
that the 3D free surface flow simulations are only performed for a limited number
of sections, the rest being modeled within 2D or 1D shallow water models.

Such a decomposition produces a simulation involving several submodels
(codes) that possibly run with different ∆x and ∆t and different spatial di-
mensions. Our goal is to perform the entire simulation on a distributed grid
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infrastructure: thus we coin our approach a distributed, multi-scale simulation
[8]. A specificity of this approach with respect to more standard distributed
computing methods is the fact that, here, the submodels are tightly coupled:
at each iteration, communications may be required and the coupling pattern is
represented by a cyclic graph.

When dealing with tightly coupled LB based components, the main concern is
to handle inlet and outlet boundaries, which depend on the temporal and spacial
resolution, and to synchronize the data exchanges at the borders between canal
segments.

3.1 MML component

Simulating multiscale applications remains a challenge for computational sci-
ences since it involves several temporal and spatial scales that requires an interac-
tion of various distributed processes. Cellular automata (CA) and Lattice Boltz-
mann (LB) models [9] are powerful numerical and theoretical approaches for
modeling various complex systems. The concept of Complex Automata (CxA) [6,
14, 15] provide a framework to couple them so as to obtain a multiscale model. A
CxA represents a set of “single-scale” LB and/or CA systems, each representing
a different physical process at a given scale. They can be coupled together to
include all relevant scales and processes into the same simulation. We refer the
reader to [15] for more details.

At a practical level, the theoretical CxA framework can be implemented
with the MUSCLE API [13, 3], a general coupling software, and the Multiscale
Modeling Language (MML) [11]. Both MUSCLE and MML are further developed
within the European project MAPPER [2], with the purpose of standardizing
the modeling and the execution of several existing multiscale applications over
large distributed HPC platforms. MML is an UML-like language which allows
scientists to describe a multiscale application, its architectural diagram and its
data-flow links in a standard and human-friendly way, using either an XML
description (coined XMML) or a graphical tool.

The general formalism offers several components to build a multiscale appli-
cation. In our case, we use the following ones: submodels, junctions and conduits:

Sub-model: A canal section can be modeled either in one-dimensional shal-
low water (SW1D) equation or three-dimensional free surface (FS3D) model. The
SW1D equation is good to describe long canal sections. We have implemented
the SW1D model presented in the previous section, in the Java language. The
FS3D model is needed to simulate the water flow around in a complicated geom-
etry, for instance a fully resolved gate, a spillway, or other type of construction
for which the shallow water is no longer adequate.

Junctions: A junction is a component that receives data from one or more
submodels, performs a computation reflecting the nature of the coupling, and
sends updated information back to the corresponding recipient submodels. Junc-
tions can be: gate, spillway, pumping station, or complex structures ...etc. They
can be abstracted through a phenomenological equation or actually simulated
with a fully detailed flow model.
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Conduit: A conduit is a virtual concept used to describe the data-flow links
between submodels and junctions.

3.2 Distributed Execution

According to section 3.1, the first step to build a multiscale application con-
sists of specifying the components and their data-flow connections. This can
be done with the MML based graphical tools, as depicted in Fig. 2(a). Then
the whole diagram can be exported as a virtual experiment package using the
GridSpace [10] platform. GridSpace is a platform that enables the end-users to
perform transparently a simulation over local or distributed grid and HPC like
infrastructures. It supports interfacing with several local resources management
systems (LRMS) like PBS [4] and grid middleware like QCGBroker [7].

The second step consists of executing the simulation. This can be done in two
ways: local and distributed execution. In case of distributed execution, GridSpace
performs the execution of the simulation by creating and scheduling jobs using
QCGBroker, which facilitates secure jobs submission and management over dis-
tributed clusters. In its simple form, a job is composed of one or more canal
segments or junctions running on a cluster node. In case of local simulation,
GridSpace utilizes the PBS LRMS to submit jobs on the nodes of the same
cluster. When the execution ends, GridSpace retrieves all the simulation results
on the front-end node in both execution scenario. It is worthwhile to remind
that a job uses the MUSCLE API calls to read its configuration parameters
from a CxA description file [14], generated automatically in the virtual exper-
iment package and describing the coupling schema, in order to handle all the
send/receive operations among remote jobs. This is shown in the listing 1.1:

Listing 1.1. Example of CxA file

# declare kernels
cxa.add kernel(’SW1D1’, ’com.unige.irigcan.kernel.d1.SW1Dkernel’)
cxa.add kernel(’SW1D2’, ’com.unige.irigcan.kernel.d1.SW1Dkernel’)
cxa.add kernel(’Gate’, ’com.unige.irigcan.junction.Gate kernel’)
# configure connection scheme
cs = cxa.cs
cs.attach(’SW1D1’=>’Gate’) {tie(’f out’,’f1 in’)}
cs.attach(’SW1D2’=>’Gate’) {tie(’f out’,’f2 in’)}
cs.attach(’Gate’=>’SW1D1’) {tie(’f1 out’,’f in’)}
cs.attach(’Gate’=>’SW1D2’) {tie(’f2 out’,’f in’)}
#parameters
cxa.env[’SW1D1:dx’]=0.05
cxa.env[’SW1D2:dx’]=0.025
cxa.env[’SW1D1:dt’]=0.025
cxa.env[’SW1D2:dt’]=0.0125

4 Coupling techniques for canal sections

4.1 Tightly coupled sections

A numerical simulation of an entire irrigation canal requires to tightly couple all
the submodels with each other. Besides, the multi-scale aspect of our application
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(a) The MAD [1] tool, a software part of
GridSpace platform, generates automatically
the XMML coupling description.

Init

Collide and Stream

Update boundaries

Observation

Init

Collide and Stream

Update boundaries

Observation

Junction

submodel 1 submodel 2

not end of
iteration

not end of
iteration

End End

End messages

(b) Template of the coupling algorithm for two
submodels and a junction.

Fig. 2. A coupling example of two submodels with a gate.

requires a predefined steps of exchanging boundary data between the submodels
during simulation. The coupling algorithm for two submodels connected with a
junction is described as follow. Each submodel obeys the CxA based formalism
proposed in [6], as depicted in Fig. 2(b). In this formalism, a submodel

1. Initializes its parameters from the CxA coupling file, send its maximum
number of iterations to the junction, and then starts execution.

2. Performs one step of computation (e.g collide and stream for a LB model)
3. Updates boundary conditions. This is done by sending data to the junction

and waiting for updated information.
4. Makes an observation if needed.
5. Increments the iteration counter.
6. Repeats back to step 2 until the maximum number of iterations is reached.
7. Sends End message to the junction and finish the execution.

In the present case, the junction is implemented as a daemon program that
keeps listening to data from the two corresponding canal sections. It is worth
noting that a junction could also be modeled as a full-fledged submodel, with
its generic CxA execution loop, solving the boundary condition problem at each
iteration and running until the whole execution ends.

The communication process requires synchronization in the following way:
the junction uses the receive() method, a blocking point-to-point operation of
the MUSCLE framework, to receive data from each canal section. From the other
side, canals send data to the junction and call the receive() method to wait for
updated boundary information. Once data has arrived from both canal sections,
the junction performs the boundary computation and sends back the updated
information to the recipient submodels. This process keeps running until the
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maximum iteration number is reached for each submodel. The submodel will
then end their execution after sending an End message to the junction.

In the case where the upstream and downstream canals have a different
spatial and temporal resolutions, grid refinement techniques must be used for the
coupling. In addition, the junction must be programmed to handle two different
frequencies of send/receive operations for each side. We have implemented such
a coupling using the grid refinement algorithm presented in [16]. The temporal
resolution ∆tc of the coarse grid was twice greater than the ∆tf of the fine
grid. The junction component was running on a separate computer node, thus
illustrating the distributed nature of the simulation.

4.2 Coupling through a gate

The information that each submodel (canal section) must send to the junction
and that it will receive in return depends on the nature of this junction. Here
we show which data and which computation are needed to couple two 1D canal
sections that are interconnected through a gate (the junction). This coupling is
based on the standard relation [12] giving the water flow Q through a gate, as a
function of the water height of the upstream and downstream canals.

Q = F (hA − hB) = γ
√
hA − hB (2)

where hA and hB are the water heights before and after the gate, respectively
and γ is a coefficient depending on the gate opening.

In the LB approach to the SW equation (see section 2), one has (assuming
∆x/∆t = 1)

hA = f0(A) + f1(A) + f2(A) QA = Q = f1(A) − f2(A)
hB = f0(B) + f1(B) + f2(B) QB = Q = f1(B) − f2(B)

(3)

where fi(x) denotes the height distribution functions at the point x, and A and
B are the points just before and just after the gate, subject to the same discharge
Q (see Fig. 3(a)).

Since A and B are at the extremity of the two canal sections, f2(A) and
f1(B) are unknown. They have to be provided by the gate model which receives
f0(A) and f1(A) on its left, and f0(B) and f2(B) on its right.

After eliminating f1(A) and f2(B) from eqs (3), one computes f2(A) and
f1(B) as

f2(A) =
1

2
[hA − f0(A) −Q] f1(B) =

1

2
[hB − f0(B) +Q] (4)

By subtracting these two equations, one gets

f1(B) − f2(A) = Q+
1

2
[hB − hA + f0(A) − f0(B)] (5)

If we assume that hA and hB are known from the previous time step (which is
certainly true in a steady state), then the right-hand side of eq. (5) is known
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because Q is a known function of hA − hB . This gives a first equation for f1(B)
and f2(A).

A second equation is obtained by requesting that the total amount of water
that enters the two canal sections is equal to the amount of water that leaves
them. This implies that

f in1 (B) + f in2 (A) ≡ f1(B) + f2(A) = fout1 (A) + fout2 (B) (6)

where fout1 (A) and fout2 (B) are known from the last LB step.
Eq. (6) and eq. (5) can be solved for f1(B) and f2(A){

f1(B) = 1
2

(
∆+ Q̄

)
f2(A) = 1

2

(
∆− Q̄

) (7)

where∆ = fout1 (A)+fout2 (B) and Q̄ = F (hA−hB)+ 1
2 [hB − hA + f0(A) − f0(B)].

Thus, the junction component of our model receives fout1 (A), hA and f0(A)
from the upstream canal, and fout2 (B), hB and f0(B) from the downstream one.
It then computes f2(A) and f1(B) according to eq. (7) and returns each of these
values to each of the canals.

The physical validity of the above coupling can be demonstrated numerically
as follows. We enforce the value hA and hB in A and B (here we chose hA = 0.12
and hB = 0.1) by imposing at each time step the values of f1(A) and f2(B) as

f1(A, t+ 1) = αf1(A, t) + (1 − α)(hA(t) − f2(A, t) − f0(A, t))

f2(B, t+ 1) = αf2(B, t) + (1 − α)(hB(t) − f1(B, t) − f0(B, t)) (8)

where α is a relaxation parameter (here chosen as α = 0.2) used to smooth the
way f1(A) or f2(B) reach a value that guarantees the prescribed heights hA and
hB . Note that eq. (8) can be seen as a way to impose a boundary condition for
the water height at a chosen canal location.

We also specify the discharge Q we want to impose through the gate as
Q = 0.1

√
g(hA − hB) = 0.044294.

In Fig. 3(b), we show the time evolution of the discharge from arbitrary
initial values for f2(A), f0(A), f1(B) and f0(B). We observe that the quantities
QA = f1(A) − f2(A) and QB = f1(B) − f2(B) converge rapidly to the imposed
value Q. After 20 time steps, QA and QB are equal to Q within a precision
of 10−5. After 40 iterations (not shown), the precision improves to 10−8. After
convergence, the value of Q̄ is found to be Q̄ = f1(A) − f2(B) = 0.035138,
showing that Q̄ is clearly different from the imposed discharge Q.

Also, after 40 steps, the value f0(A)+f1(A)+f2(A)−hA is smaller than 10−8,
showing the excellent convergence of the present gate model and the present
boundary condition used to impose the heights hA and hB . Note that taking
α = 0 in (8) gives a much slower convergence (oscillations).

5 Conclusion

We have presented a formalism to build an irrigation canal from generic and
reusable components, and to simulate the water height and flow over a dis-
tributed grid infrastructure. This is obtained by decomposing the corresponding



Coupling method for irrigation canals 9

(a) The known (f1(A), f0(A),f0(B) and
f2(B)) and unknown (f2(A) and f1(B))
distribution functions at the connection
lattice site A and B.
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iteration
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Convergence of the discharge to the imposed one

(b) Convergence of the flow QA (black
dots) and QB (white dots) to the
imposed discharge Q = 0.044294. Other
parameters: τ = 0.6, α = .2, hA = 0.12,
hB = 0.1.

Fig. 3. A coupling example of two SWD1 based submodels with a gate.

canal network into different segments and coupling them through junctions. Each
canal segment can be resolved separately with either a 1D shallow water model
or 3D, free-surface flow model. The coupling of these segments through junctions
have been described in a “standard” way using the MML and CxA formalisms.
We have also indicated that our approach can handle relatively different scales,
particularly the coupling of coarse and fine LB submodels.

We have proposed an explicit implementation of a gate junction within the
LB numerical method. This junction receives information from both canal sec-
tions and returns the proper boundary conditions that ensure the right discharge
between the two canals.

This demonstrates that our approach of building a canal irrigation based on
the MML and CxA formalism can be easily adopted to model much more com-
plex systems. Furthermore, computing results can be sped up by running large
simulation as distributed multiscale application over an HPC grid infrastructure.

We are currently developing the coupling of 1D and 3D models based on the
LB method. Furthermore, we are working on an efficient multi-criteria algorithm
to schedule jobs in an intelligent manner that will (1) assign the adequate com-
puting resource to each canal segment accordingly to its computation require-
ments and (2) reduce communication time and data transfer between coupled
segments.
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