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Executive summary

This deliverable provides a report of deliverable D7.1. Its aim is to review
the work done during the first 12 months of the MAPPER project, according
to the description of WP7.
The goal of WP7 is to adapt or develop a set of selected multiscale ap-
plications to the MAPPER framework. This amounts to expressing these
applications in a Multiscale Modeling Language (MML), and to adapt the
submodels in order to implement their mutual couplings. From that stage,
the application can be run on a distributed computing infrastructure, such
as the European grid platforms.
Deliverable D7.1 is a first report on the adaptations of the selected appli-
cations, whether tightly or loosely coupled. Each of them is described with
respect to its level of integration as a “multiscale distributed application”.
In this first report, the objective is to build a manual adaptation to better
understand the specificities of each application and use this information to
build the tools that are developed in WP8.
At the end of this first year, we can conclude that the main objective is
attained in a satisfactory way. Most applications are amenable to the MAP-
PER framework, although only two of them (nano-material and In-Stent
Restenosis 3D) are fully MAPPER compliant at this stage. For the other
applications, work is progressing well and we do not expect any difficulty to
reach the manually programmed version within a few months.
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1 Introduction

The goal of WP 7 is to consider a portfolio of real-life multiscale applica-
tions from various fields of science and technology. These applications
must then be adapted to the distributed multiscale framework developed
in the MAPPER project. For what concerns WP7, this amounts to express
each application in terms of the coupling of several single-scale submodels,
identify the nature of the couplings that links each pair of submodels and
develop the software components that implements this architecture.
The so-called Multiscale Modeling Language (MML) is the base of our pro-
posed framework. A more detailed explanation of the concepts and notation
is given in section D and the references therein. Note that some aspects of
the theory are is still under development within the MAPPER project. The
original approach evolves as we learn more from the selected applications.
As planned in the description of work, the adaptation of the selected appli-
cation to the MML framework is first performed manually, by reprogramming
some parts of each applications, or by developing new software compo-
nents, including the proper communication ports, as required by the for-
malism. Then these elements must be integrated manually within the Grid
Space engine or the MUSCLE middleware in order to obtained a distributed
multiscale application ready to run on the selected platforms. This requires
to write explicitly the scripts that glues the different components together.
In a later stage of the MAPPER, the integration will be done automatically
from the MML description, through the tools developed in WP 8.
The next section considers the applications in the selected portfolio and de-
scribes how the above concepts have been implemented for each of them.

2 Report on the adaptation of applications

This section is organized as follows. For each application, a short descrip-
tion is first given in order to remind the reader of the problem and to make
this document more self-consistent. Also, some new decisions on the mul-
tiscale framework might be given if they differ from the choices already
explained in deliverable 4.1.
After this short introductory description, the implementation of the applica-
tion within the chosen framework is described. In particular, this second
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section explains how far the application is from the targeted milestone: “a
manually programmed version”. The discussion includes, whenever pos-
sible, the status of the refactored (or new) codes for the submodels, the
status of conduits and mappers, their Integration within MUSCLE and/or
GridSpace (communication ports, configuration), and the MML or full xMML
description.
For several applications, additional material is given in an appendix, at the
end of the document.
Note that a summary of the MML approach is given in appendix D. It ex-
plains the symbols used in many of the diagrams shown below, in particular
the meaning of the shapes that terminate the conduit from one submodel
to the other.
Due to a lack of manpower, the two fusion applications, “ Equilibrium Sta-
bility Workflow” and “Transport Turbulence Equilibrium” have not yet been
adapted to the framework.

2.1 Simulation of Clay-polymer Nanocomposites (Nanomateri-
als)

2.1.1 Description

Polymer nanocomposites (PNCs) are a new range of particle filled compos-
ites with one component possessing a dimension in the nanometre range.
Nanocomposites fall within the realm of the emergent area known as nan-
otechnology, where materials are designed and built at the atomic level,
an area of science currently at the forefront of academic, industrial, health
and public interest [1]. The microscopic structure and mechanisms of lay-
ered nanomaterials operate over many different length scales, ranging from
nanometers to microns; each length scale needs to be properly simulated
to fully understand their features. This knowledge will eventually lead to the
design of novel layered mineral systems with properties tailored to their ap-
plication. Several types of nanocomposite structure are possible within min-
eral layers separated by polymeric material including polymer molecules
that wrap around large mineral particles (tactoids), polymers that enter be-
tween the layers of the clay (intercalate) or mineral layers which exfoliate
and become homogeneously dispersed within the polymer matrix.
To understand how we can control which of the three scenarios is most
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likely, we need to understand the thermodynamic conditions for the stability
of the mineral layer dispersed state and the kinetic mechanisms of disper-
sion, i.e. from intercalation of the clay layers by polymer through to full
exfoliation of the clay layers. To accomplish this, we develop a loosely cou-
pled multiscale simulation model that allows us to study and design layered
mineral composites. Our model is initiated at a quantum mechanical scale,
followed by a fine-grained molecular dynamics submodel, in turn providing
the input for a coarse-grained molecular dynamics submodel (see Fig. 1).
Several post-processing scripts are run between each scale of the model
to perform data conversion. These scripts may be preprogrammed, but
can also (in some cases) be modified by the user between submodels. An
overview of the structure of this simulation can be found in Fig. 2.
The purpose of coupling the single scale submodels is to produce a coarse-
grained nanomaterials simulation which exhibits statistically accurate be-
havior on finer levels (e.g., on the resolution of clay-polymer interactions).
The fine-grained and quantum mechanical submodels have multiple in-
stances (typically one or two dozen), while we run a single instance of
the coarse-grained submodel in the final stage of the computation. Be-
cause the simulations do not run concurrently, and the frequency (and re-
quired performance) of data exchange between subcodes is limited, we
use GridSpace to perform the coupling between the submodels [2]. An
overview of the application requirements can be found in Table 1.

2.1.2 Implementation

The loosely coupled nanomaterials application is scheduled to be deployed
and working by the fall of 2011, and our efforts have been primarily aimed
towards achieving that goal. We have initially investigated the quantum
mechanical aspects of clay polymer interactions and have obtained the ex-
pertise to integrate the submodel on the quantum mechanical level into our
simulations. Furthermore, we have made considerable progress in the de-
ployment, as we have gained access to the PRACE and EGI resources and
already deployed and tested the individual submodels for all the resources
described in Fig. 2. We are currently working towards establishing the code
coupling using GridSpace 2, and testing the integration between GridSpace
2 and AHE for our application.
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Figure 1: Scale Separation Map of the nanomaterial application. Labels
between ‘<>’ indicate the contents of the interaction

Figure 2: Deployment overview of a loosely coupled distributed multiscale
nanomaterials application within MAPPER. Here the CPMD submodel runs
on a small cluster at University College London, while the fine-grained and
coarse-grained MD submodels run respectively on a PL-Grid EGI cluster in
Poland and the Huygens supercomputer at SARA in Amsterdam.

The works towards implementing the nanomaterial application have not yet
led to revisions in the conceptual properties of our application, which can
be found in Fig. 1 and Fig. 3.
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Table 1: Overview of the requirements of each submodel in the nanoma-
terials application. It lists the current resources used by the submodel and
the required resources to use the submodels full potential.

Coarse-grained molecular dynamics
Requirement State of the art Required capabilities
# of cores 256 8192
memory per core [MB] 200 200
runtime 2-6 hours 21 days
coupling frequency 1/run (at the start) 1/hour
max. data size (coupling) 1MB 32MB
max. data size (output) 1GB 32GB

Fine-grained molecular dynamics
Requirement State of the art Required capabilities
# of cores 256 8192
memory per core [MB] 200 200
runtime 2-6 hours 2-6 hours
coupling frequency 1/run (at the end) 1/hour
max. data size (coupling) 1MB 32MB
max. data size (output) 1MB 32MB

Quantum mechanical simulation
Requirement State of the art Required capabilities
# of cores 16 64
memory per core [MB] 200 200
runtime 1 hour 1 hour
coupling frequency 1/run (at the end) 1/hour
max. data size (coupling) 1MB 32MB
max. data size (output) 1MB 32MB

2.2 In-stent Restenosis 3D (Physiology)

2.2.1 Description

The multiscale three-dimensional In-stent Restenosis model (ISR3D) al-
lows 3D simulation of a stent deployment in a coronary artery and subse-
quent processes. The objective of the model is to help understand resteno-
sis and to indicate improvements in stent design. An extended multiscale
model, in terms of an SSM is described by [4]. A simplified version as well
as a detailed description of the implementation of the submodels and the
coupling with MUSLE is provided by [3, 5]. Some detailed two-dimensional
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Figure 3: Multiscale Modelling Language graph of the nanomaterial appli-
cation.

simulations are reported by [6].

2.2.2 Implementation

The ISR3D model consists of five submodels: stent deployment as initial
conditions (IC), blood flow (BF), drug diffusion of a drug eluting stent (DD),
smooth muscle cell proliferation (SMC), and thrombus formation (Blob). Ex-
cept IC, these are shown as a Scale Separation Map in Figure 4. First, IC
initializes the model by placing a stent in an artery. These initial conditions
are sent to SMC, which calculates cell dynamics and proliferation. Then for
each iteration of SMC, Blob optionally calculates where thrombus should
be formed given the blood circulation. This information, along with the cell
positions, are given to DD and BF, which are calculated in parallel. Both
DD and BF then return their calculated values to SMC. For performance
reasons BF keeps track of its last state, simplifying subsequent flow calcu-
lations.
The computational requirements of the submodels are listed in Table 2.
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Figure 4: A SSM of the ISR3D model, excluding initial conditions.

Table 2: Runtime statistics of submodels of ISR3D. See text for the defini-
tion of the submodels. First is the test environment for the figures listed,
then the runtime per iteration, memory, data transferred per iteration and
finally the total amount of data transferred.
Submodel Test env. Cores Runtime/iter. Memory DT/iter. Total DT

IC Pentium 4 1 20 min. 200 MB 150 MB 150 MB
SMC Pentium 4 1 20 min. 100 MB 100 MB 300 GB
BF NEC SX-8 64 15 min. 200 MB 50 MB 150 GB
DD Pentium 4 8 5 min. 100 MB 50 MB 150 GB

Blob Pentium 4 1 5 min. 100 MB 50 MB 150 GB
ISR3D mixed 1 month 700 MB 400 MB 120 GB
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Figure 5: The gMML of the ISR3D model described in Section 2.2.1. SMC
transfers to a fan-out mapper ‘voxel’ that converts the particle based repre-
sentation to a regular grid. This grid is given to Blob and the ‘add’ mapper,
and the mapping from cells to grid is given to the ‘in’ mapper. After Blob
has calculated a thrombus, it sends it to the fan-in mapper ‘add’, which
combines it with the grid that ‘voxel’ sent. The combined grid is sent to the
fan-out mapper ‘out’, which sends it on to DD and BF. The results of DD
and BF are collected by the fan-in mapper ‘in’, which maps their results on
a grid back to the particles of SMC and sends this result to SMC.

The coupling templates used are (see apendix D for definitions)

• Of → finit from IC to SMC,

• Oi → finit from SMC to Blob,

• Of → finit from Blob to DD and BF,

• Of → S from DD and BF to SMC.

Each of the submodels is implemented with MUSCLE, as are the fan-in and
fan-out mappers to facilitate data transfers from one submodel to the other.
The data transfers now happen as visualized in Figure 5.
The model has run at an EGI test site in Poznan. Except SMC, each of the
submodels have run on a DEISA resource, the Huygens supercomputer at
SARA computing centre in the Netherlands. The SMC submodel could not
be run there due to a library dependency.
Although the Blood Flow code runs, we are still trying to exploit the full
extent of parallelism of the submodel using MPI. So far, the combination
of MUSCLE, Java, Java Native Interface (JNI), and MPI, have not been
able to work for us, although there has been progress. To solve this, we are
working on using the Palabos Lattice Boltzman solver 1. This solver already
uses MPI and can run as a standalone application, so it does not need JNI.

1http://www.palabos.org/
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The MML was visualized Figure 5 but the full xMML is listed in Appendix A.1.

2.3 Transport Turbulence Equilibrium (Fusion)

2.3.1 Description

This project is concerned with describing the behaviour of the core plasma
of a tokamak. The codes used for this are

1. a 1D transport codes that advances (in time) profiles of density (mul-
tiple ion species), temperature (multiple ion species and electron),
plasma magnetic flux and rotation profiles (multiple ion species) as a
function of a radial coordinate (ρ) subject to externally provided met-
ric coefficients (“geometry”), sources and transport coefficients [ETS,
[7]]

2. an equilibrium code which, given information calculated by the trans-
port code, calculates the metric coefficients needed by the transport
and turbulence codes [HELENA, [8]]

3. a turbulence code that, given plasma profiles by the transport code
and metric information from the equilibrium code, calculates transport
coefficients to be used by the transport code [GEM, [9]]

This is a reduction of the schematic workflow shown in Figure 6, to Figure 7.
The physics in a tokamak involves a wide scale separation in time, space,
and dimensionality (with descriptions ranging from 1D to 6D), as shown in
Figure 8. For the reduced description used initially in this project, a scale
separation map is shown in Figure 9.
Estimates for the computational requirements are shown in Table 3.

Table 3: Estimated computational requirements for the transport-
equilibrium-turbulence fusion workflow showing the runtime per iteration,
memory, data transferred per iteration and finally the total amount of data
transferred, all for modern Intel/AMD processors.
Submodel Cores Runtime/iter. Memory DT/iter. Total DT
HELENA 1 5 min 100 MB 10 MB 10 GB

GEM 4*8 – 16*256 25 min 2 GB 1 MB 1 GB
ETS 1 0.01 s 100 MB 1 MB 1 GB
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Figure 6: Schematic workflow describing the evolution of the core plasma
in a tokamak.

Figure 7: Reduced workflow showing threee key ingredients: ETS, a 1D
core transport code; HELENA, an equilibrium code; and GEM, a turbulence
code
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Figure 8: A large variation in the space- and time-scales of the physics
describing the behaviour is found. In addition, the modules differ in the
number of treated dimensions, from 1–6,

Figure 9: Scale separation map for the reduced transport-equilibrium-
turbulence workflow.
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2.3.2 Implementation

All of the modules are functional. Work is being done on serializing the
data that is transferred between the codes from the current format (based
on a software environnment developed within the Integrated Tokamak Mod-
elling Task Force of the European Fusion Development Agreement (ITM-
TF-EFDA), [10]) to that required within MAPPER.

2.4 HemeLB (Physiology)

2.4.1 Description

We are concerned with performing neurovasculature blood flow simulations
in support of clinical neurosurgery. Cerebral blood flow behavior plays a
crucial role in the understanding, diagnosis and treatment of cardiovascular
disease; problems are often due to anomalous blood flow behavior in the
neighborhood of bifurcations and aneurysms within the brain. Simulation
offers the possibility of performing patient-specific, virtual experiments to
study the effects of courses of treatment with no danger. For this work,
we will use our lattice-Boltzmann model, HemeLB [12, 11], designed to
simulate fluid flow in the sparse topologies of the human brain. The code
can create visualizations from within a running simulation and send them to
a viewing client on a workstation situated in, eventually, the hospital. The
clinician can then steer the parameters of the simulation.
This work uses the HemeLB code, which is well-suited to describe fluid be-
havior within sparse systems such as neurovasculatures. The code is writ-
ten in C/C++ and parallelized using MPI. It employs a number of algorithmic
optimizations and techniques to efficiently compute and communicate flow
data in sparse and complex geometries. The domain decomposition, us-
ing the ParMETIS graph partitioning library, ensures that computational do-
mains are well balanced. Efficient layout of memory and memory access
patterns further optimizes the fluid simulation. HemeLB has built in real-
time rendering and steering capabilities such that the time-varying behavior
of the blood flow can be visualized live by a parallel, in situ rendering algo-
rithm. Each frame is transmitted over the network to a workstation which
visualizes the frame in real time. The visual and physical parameters can
be interactively modified through steering capabilities. The analysis and
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visualization, particularly in real-time, is essential to this successful use of
this code in clinical environments.
Away from the region of interest, the accuracy demanded to the hydrody-
namic simulation is lower and so can be simulated at a lesser computational
expense at a lower resolution, without significantly affecting the accuracy.
Further still away, the rest of the circulatory system can be abstracted to a
network model of the vascualure and a pump, i.e. the heart. We will couple
this hierarchy of submodels together to form a multiscale model.
The submodels are all tightly coupled, each providing boundary conditions
to the concurrently-executing, adjacent submodels. The frequent commu-
nication between models places demanding requirements on the latency of
the coupling library, although in the first instance the volume of data to be
exchanged is low. The coupling from the network model to HemeLB will
require construction of a flow profile (typically a parabolic Poiseuille flow
profile) and the reverse coupling will require computation of the the aver-
age pressure and velocity. Coupling of the different resolution HemeLB
simulations will require resampling of the underlying lattice-Boltzmann dis-
tribution functions between resolutions. The number of submodels and the
coupling between them is determined during simulation setup.
Software requirements:

• MPI

• ParMETIS graph partitioning library.

2.4.2 Implementation

HemeLB has been subject to major code improvements over the last year.
The performance on a per-process basis has increased by a few percent
and the parallel performance improved by an order of magnitude. The im-
provements have been made with constant regard to good software engi-
neering and numerous parts have been rewritten in a modular fashion.
This has allowed us to begin the programming to allow coupling between
models. As a first stage, infrastructure to broadcast boundary condition in-
formation to all processes that require it has been implemented and tested
for that case of one process reading pressure data from a file. This could
be adapted (by reimplementing one method) to accept data from either the
network or another MPI process running concurrently.
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Figure 10: HemeLB Scale Separation Map

Figure 11: HemeLB: characterization of the application coupling template
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Table 4: Computational requirements for the HemeLB scenario. It lists the
current resources used by the submodel and the required resources to use
the submodels full potential.

HemeLB
Requirement State of the art Required capabilities
# of cores 1000 20000
memory per core [MB ] 100 100
runtime 30 min 30 min
coupling frequency 1/time step 1/time step
max. data size (coupling) 1 kB 100 kB
max. data size (output) 1GB 10GB

Network flow model
Requirement State of the art Required capabilities
# of cores 1 100
memory per core [MB ] 10 100
runtime minutes ?
coupling frequency 1/time step 1/time step
max. data size (coupling) 1 kB 100 kB
max. data size (output) 10 MB 100GB

For the case of coupled HemeLB simulations of different resolutions, we
plan to implement the coupling based on the full lattice-Boltzmann distribu-
tion functions, instead of the hydrodynamic variables (pressure, velocity) as
this involves the least loss of information.

2.5 Irrigation Canals (Hydrology)

2.5.1 Description

Canals or rivers are a central infrastructure in all populated areas. They en-
sure an adequate supply of water for agriculture and are a key component
of electricity production or transportation. An optimal management and the
control of such resources can be a critical issue for long term planning or to
react to natural hazards. In a recent collaboration with ESISAR (Ecole na-
tionale suprieure des systmes avancs et rseaux) at Grenoble INP, France,
UNIGE has developed multiscale models for management of a network of
irrigation canals. The problem to be solved is to define appropriate actions
(e.g. opening and closing gates) that need to be taken to always guarantee
an adequate water supply throughout the canal system, whatever the exter-
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nal demands or perturbations can be, and respecting constraints such as
water height. Our simulation example is a model of the canal de la Bourne
irrigation network. This network was built in the late 19th century to irrigate
the plains around Valence in France. It is still in use nowadays and its fine
modelling and control has become a new challenge. Indeed, the demand of
water considerably increased over the last few decades as the constraints
on the quantity of water which may be withdrawn from the up-stream natural
river La Bourne became more and more limited.
Details about the components of the canal network have been already pre-
sented in deliverable 4.1 of the MAPPER project [18].

2.5.2 Implementation

Four main submodels have been identified going from simple one and two-
dimensional shallow water flow to three-dimensional free surface and sedi-
mentation process.

Shallow Water 1D (SW1D) The one-dimensional shallow water equation
can be used to describe long canal sections. In [23], a model has already
been developed based on the D1Q3 lattice Boltzmann (LB) shallow water
equation, analyzed in detail and compared with other numerical schemes.
The D1Q3 LB model has been implemented with Java and numerical sim-
ulations were performed for validation.

Shallow Water 2D (SW2D) It describes branching regions or pools in
which the water height varies from the left to the right side. 2D LB-SW
models have been considered in several papers [24, 25, 26]. The D2Q9 LB
model has been coded in Java and numerical simulations were performed
for validation.

Free surface 3D (FS3D) This submodel focuses on the details of the
water flow around gates, spillways etc... A meaningful numerical investiga-
tion of this problem requires the correct calculation of vertical structure of
the flow and the interaction between the liquid and the solid obstacles. A
submodel, based on the Free Surface Lattice Boltzmann algorithm (FSF-
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LB) [17] has been programmed in the PALABOS2 environment. It allows
for an explicit 3D solution for the interaction between the gate/water system
without having to simulate a bi-fluid problem (water-air) [13, 14, 15] or by
simplifying the problem using a shallow water approach [16]. 3D massive
parallel lattice Boltzmann computations of Free Surface fluid flow have been
performed numerically through a gate (see Fig. 12) and results were com-
pared with empirical relationship derived from experiments performed on a
laboratory micro-canal facility (LCIS laboratory [22]). Parameters such as
the shape of the gate, the initial water level and the velocity of the opening
gate system were numerically modified in order to extend the validity range
of the known empirical relation. Dam breaking simulations have been also
performed using the same model and they showed intresting results as
shown in appendix B.1. The Palabos software uses MPI, which may con-

Figure 12: Lattice Boltzmann simulations of a 3D free surface flow around
a gate.

2www.palabos.org
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flict with MUSCLE. A Java binding is being developed to make PALABOS
compatible with the tools used in MAPPER.

Sediment transport Sedimentation strongly influences the water flow,
i.e. reduces the efficiency of the irrigation network. Sediment can be de-
fined as a fragmented material from rocks that has been formed by dif-
ferent physical and/or chemical process and may be transported in three
ways: bedload, saltation and suspension. A model of sedimentation has
been developed based on a bi-fluid lattice Boltzmann approach. In its 1D
version, it uses a simple shallow water 1d model in order to estimate the
shear stress between the water and the bed of the canal. The particles on
both lattices are updated with respect to the shear stress value. This model
has been coded in C++ but not yet validated with respect to experimental
investigations. The next steps will consist of using the same approach to
generate the 2D sedimentation model and eventually a 3D model based on
the developed free surface model.

Coupling Implementation As a proof of concept for the tightly coupled
aspect of the irrigation canal application, we considered for instance a con-
nection between two gates of 5 m long and two shallow water 1D of 1 km
long. The gate is a simple submodel based on an analytical expression
which needs at each time step the state variables in the boundaries of
each canal in order to compute the updated values of the missing variables
needed by the SW1D models. Hence, the coupling operators used are finit

and Of .
In its complex form, the gate model can be transformed into a 3D free
surface model when it is needed. Particularly, it will be the case when
the flow around the gate becomes turbulent and as a consequence, small
details of the fast water dynamics around the gate influence significantly
the slow dynamics of the long reach canal, i.e. they modify the 1D shallow
water submodel.
In this case, the grid sizes are 2 m for the SW1D and 1 cm for the FS3D
which is translated into a space overlap on the SSM as shown in Fig 13.
We assume that the flow takes 10 hours to reach the steady state which is
the same time scale for both submodels due to the continuity of the flow.
Moreover, the time step sizes are 10 min for the SW1D and 0.1 min for the
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FS3D which is translated into a time overlap on the SSM.
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Figure 13: Scale Separation Map.

In practice and as a first step, a simple coupling example has been pe-
formed between two instances of a 1D canals. the submodels and portals
have been defined in MaMe (mapper memory) [19]. Then, the multiscale
application designer (MAD) [20] is used in order to explicitly couple the
instances of the considered submodels. In the simulated example, each
SW1D has two inputs and four outputs and each gate has four inputs and
two outputs. Once the coupling between all portals (inputs and outputs)
has been done, a CxA file (see appendix B.2) is automatically generated
and then used through MUSCLE to run the simulation. The application has
been successfully run using GridSpace2 with MUSCLE as an interpreter
and simulations were performed on a machine hosted by Poznan Super-
computing and Networking Centre.
In a second step, the coupling example described by the SSM of Fig. 13
has been implemented in the same way successfully and in this case, two
instances of SW1D and two instances of a gate are used. As depicted in the
Fig. 14, each SW1D has two inputs and four outputs and each gate has four
inputs and two outputs. Similary, the coupling is described by a cxa file (see
appendix B.3), while the Java based coupling is done using the MUSCLE
classes. Therefore, as an example, our SDW1 kernel implementation is
written mainly in Java (see appendix B.3).
Finally, a stand-alone version of the second example of coupling has been
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Figure 14: coupling diagram generated by the MAD tool from WP 8. For
the meaning of the symbols, see appendix D.

implemented in Java directly in order to easily handle the output data of
our numerical simulations and for validation. This implementation uses the
Java CxALite package [21] and allows to run the coupling schema on the
same machine for debugging and validation purposes (see appendix B.4) .

2.6 Reverse-engineering of gene-regulatory networks (Compu-
tational Biology)

2.6.1 Description

Due to the limited availability of published data for the bile acid and xenobi-
otic system (BAXS), we have decided to temporarily shift our focus towards
investigating reverse-engineering of gene-regulatory networks (GRNs). We
chose this, as gene regulation is an important dimension in biology and,
most importantly, plenty of data is publicly available.
Regulation of gene expression (or gene regulation) refers to processes that
cells use to create functional gene products (RNA, proteins) from the in-
formation stored in genes (DNA). These processes range from DNA-RNA
transcription to the post-translational modification of proteins. Gene regu-
lation is essential for life as it increases the versatility and adaptability of
an organism by allowing it to express protein when needed. After the com-
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pletion of such large-scale efforts as the Human Genome Project3 and re-
cent advances in microscopy and biological imaging techniques, the scien-
tific community is acquiring data of unprecedented detail about the building
blocks and internal structures of living organisms. The stage has thus been
set for mathematical modelling and computational simulation of complex,
large-scale GRNs.
The idea behind reverse-engineering of GRNs is to discover an optimal set
of parameters for a computational model of the network that is able to ade-
quately simulate the behaviour described by the gene expression data sets.
One first issue we encounter is that there are multiple methods one can
choose from to represent the GRN. Three of the most important of these
methods have been compared by Swain et al. [33]. These mathematical
models require a number of parameters to be fine-tuned in order for the
models to accurately simulate real biological network behaviour. This is a
combinatorial optimization problem that often requires considerable com-
putational resources depending on the size and complexity of the network
being investigated.
Due to the limited number of time points at which gene expression mea-
surements are typically made, the reverse-engineering of GRNs usually
constitutes an under-determined problem (having more parameters to esti-
mate than the number of measurements [28]. Although hundreds of gene
activities can be measured simultaneously with microarray experiments,
the number of (time-dependent) data points established for each gene is
typically small, leading to highly under-determined systems. As a conse-
quence, reverse-engineering can yield solutions which are able to fit the
available data very well, yet which are very weak in their ability to predict
dynamic activity under different conditions to those initially explored [35].
In addition, depending on the mathematical model used, very small varia-
tions in a single parameter value can have quite a dramatic effect on the
overall network behaviour. There may therefore be a great variation in the
quantity of computing power required to optimize parameter values in dif-
ferent networks and in different mathematical models. We distinguish be-
tween two sets of case-studies for our application: in the beginning we
will focus on simple, monolithic GRNs, consisting of typically up to 10-20
genes which are part of a single biological function. Then, we will address

3The Human Genome Project: http://www.ornl.gov/sci/techresources/Human Genome/home.shtml
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more complex, modular GRNs, consisting of tens or hundreds of genes
for which a process/functional decomposition was investigated in the bio-
logical system. As an example of a simple GRN case scenario we men-
tion the work of Cantone et al. [27], who synthetically engineered a GRN
containing 5 genes in yeast in order to facilitate an in vivo assessment of
various reverse-engineering and gene network modelling approaches, in-
cluding approaches based on ordinary differential equations (ODEs). We
have acquired two datasets, containing 16 and 21 time points respectively.
For the optimization itself, we will initially use the particle swarm optimiza-
tion (PSO) technique. PSO is a population-based stochastic optimization
technique, developed by Kennedy & Eberhart [30] and useful in the field
of numerical optimization (e.g. minimizing or maximizing a given function).
It is inspired from animal social behaviours such as bird flocking or fish
schooling and shares many similarities with evolutionary computation tech-
niques such as genetic algorithms (GA). As with GA, in PSO the system
is initialized with a population of random solutions, called particles, and
searches for optima by updating these particles through generations. Un-
like GA, however, PSO does not have any evolution operators such as
crossover or mutation, resulting in a fewer number of parameters for the
particles. In PSO, the potential solutions “fly” through the solution space by
“following” the current optimum particles.
In our implementation, we combine two approaches of evolutionary algo-
rithms: the cellular and the insular approach. See Appendix C.1 for a more
thorough description of the PSO technique and details of our implemen-
tation. The insular aspect of this technique is what gives a first level of
multiscaleness to our application. Each island can be seen as a submodel
and thus the coupling will consist of the communication between the islands
(the periodic migration of particles). Figure 15 shows the coupling template
we use for simulating the simple GRN case-studies. More details can be
found in the following section.
In the second set of case studies, the multiscale aspect will be represented
by the modular nature of the GRNs we investigate. This will be reflected
in the modular aproach we will employ for the reverse-engineering, where
each submodel will represent a GRN module. It is our assumption that
we will need to use multiscale modelling and simulation methodologies and
technologies for such a complex scenario. As an example, we have ac-
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Figure 15: The coupling template for the simple GRN scenarios

quired a dataset published by Materna et al.[31], containing 48 time points
for 176 genes. The authors investigated gene expression in the early de-
velopment stages of a marine animal called a sea urchin. Figure 16 shows
part of the GRN they describe, where each coloured box represents a mod-
ule of the GRN.

2.6.2 Implementation

We have finished the implementation of a first prototype of the GRN applica-
tion, which allows us to run local experiments with a GRN model consisting
of 5 genes and 40 parameters (a typical simple GRN scenario, implement-
ing the recurrent neural network (RNN) method for modelling GRNs [34],
based on the data provided by Cantone et al. [27]). As previously stated,
each island is a separate module implemented as a Java class. The islands
run independently of each other, except for occasions in which they will ex-
change particles. See Appendix C.2 for more details about the run-time
behaviour of our prototype.
As dictated also by the MAPPER project’s goal, we try to make use of as
many pre-existing tools and standards as possible. Systems biology stan-
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Figure 16: Part of a GRN snapshot in early sea urchin development

dards such as SBML and SBRML are used to represent our GRN model
(which consists of a system of ODEs) and the experimental and simulated
data, respectively. We use the XPPAUT4 ODE solver to generate data from
our GRN model for parameter fitting. We have identified the necessary
tools to enable the flow of information between the following standards and
formats:

SBML−XPPAUT − CSV − SBRML

We use the Java version of the libSBML5 library to read from and write to
SBML models and to construct an input file for XPPAUT. For the latter step
we also have the option of using a special tool called SBML2XPP6, how-
ever in practice this proved to take more computing time than directly using
the libSBML API routines. XPPAUT outputs its results in a CSV (comma
separated values) file, which is then translated to SBRML by using a tool
called ConsoleSBRML7.
To address the need for high-performance computing, we will deploy the
GRN application on the MAPPER infrastructure. We have set up the com-
puting architecture to use some of the special standards and internal tools
which are being developed for MAPPER. Namely, we use MUSCLE to man-
age the coupling between our islands and we will run the application on the

4http://www.math.pitt.edu/~bard/xpp/xpp.html
5http://sbml.org/Software/libSBML
6http://www.ebi.ac.uk/compneur-srv/sbml/converters/SBMLtoXPP-Aut.html
7http://sbrml.sourceforge.net/SBRML/Welcome.html
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GridSpace28 simulation framework. To achieve this, we will register the
components that MUSCLE needs to run into a web interface called MaMe
(MAPPER Memory) Registry and we will define the coupling topology of
our application in the MAD (Multiscale Application Designer) tool, by using
the MML standard.
In conclusion, all the components described in the coupling topology are
fully implemented and running, using the MUSCLE library for communica-
tion. Following work will be on finalizing the MML description of the appli-
cation and deploying it on MAPPER using the GridSpace environment.

3 Conclusions

This document is a first report on the adaptation of the chosen applications
to the MAPPER infrastructure and to the theoretical framework. Therefore,
it is not yet expected that all of them are ready to run in a production mode.
However, at this stage of the project, we can observe that a significant
progress has been made for most of the selected applications. The pro-
posed multiscale formalism could be applied rather well to all of them de-
spite their different computational structure.
Some applications could follow the proposed approach very closely and are
in an advanced stage of development. This is often related to the familiarity
of the developers with the proposed formalism and the degree of maturity
of the application. From the description of the previous section, it is clear
that there is not yet a convergence of the methodology and vocabulary
among the different teams. This is easily explained by (1) the diversity of
the application groups, (2) the fact the theoretical framework is still adjusting
as the project progresses and (3) that some teams are more involve in the
MML development than others.
Although there are still several pieces of code that need to be produced be-
fore all applications can be run “manually” within the chosen runtime frame-
works (MUSCLE, GridSpace), we can conclude that the work done in WP7
during this first year is in accord with our plan and confirms the feasibility
and potential of the MAPPER approach for a wide range of applications.

8http://dice.cyfronet.pl/gridspace/
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A Details on implementation of the ISR-3D applica-
tion

A.1 The xMML description of In-stent Restenosis 3D (Physiol-
ogy)

The following is the xMML description of ISR3D.

<?xml version="1.0"?>

<model xmlns="http://www.mapper-project.eu/xmml" xmlns:xi="http://www.w3.org/2001/XInclude" id="ISR3D" name="In-stent restenosis 3D" xmml_version="0.3.3">

<description>

A model of the process that occurs in the artery after stenting.

</description>

<definitions>

<datatype id="latticeInt" size_estimate="x*y*z*sizeof(int)"/>

<datatype id="latticeDouble" size_estimate="x*y*z*sizeof(double)"/>

<datatype id="agentLocations" size_estimate="4*n*sizeof(double)"/>

<datatype id="agentDouble" size_estimate="n*sizeof(double)"/>

<datatype id="agentFull" size_estimate="4*n*sizeof(double)+n*sizeof(double)"/>

<datatype id="latticeMetadata" size_estimate="2*sizeof(int)+4*sizeof(double)"/>

<mapper id="distributor" type="fan-out">

<description>

Maps a number of agents or particles to a lattice.

</description>

<ports>

<in id="geometry" datatype="latticeInt"/>

<out id="latticeBF" datatype="latticeInt"/>

<out id="latticeDD" datatype="latticeInt"/>

</ports>

</mapper>

<mapper id="collector" type="fan-in">

<ports>

<in id="cell_mapping" datatype="agentFull"/>

<in id="latticeBF" datatype="latticeDouble"/>

<in id="latticeDD" datatype="latticeDouble"/>
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<out id="cell_bf" datatype="agentDouble"/>

</ports>

</mapper>

<mapper id="voxelizer" type="fan-out">

<ports>

<in id="cell_positions" datatype="agentLocations"/>

<out id="geometry" datatype="latticeInt"/>

<out id="cell_mapping" datatype="agentFull"/>

</ports>

</mapper>

<mapper id="gridCombine" type="fan-in">

<ports>

<in id="geometrySmc" datatype="latticeInt"/>

<in id="geometryBlob" datatype="latticeInt"/>

<out id="geometry" datatype="latticeInt"/>

</ports>

</mapper>

<filter id="coarsenGrid" type="reduction" dimension="spatial"/>

<submodel id="IC" name="Initial cell conditions">

<timescale delta="1 ms" total="100 ms"/>

<spacescale delta="10 um" total="1 mm" dimensions="3"/>

<ports>

<out id="cells" operator="Of" datatype="agentLocations"/>

</ports>

</submodel>

<submodel id="Blob" name="Thrombus formation">

<timescale delta="1 ms" total="100 ms"/>

<spacescale delta="10 um" total="1 mm" dimensions="3"/>

<ports>

<int id="geometry" operator="finit" datatype="latticeInt"/>

<out id="thrombus" operator="Of" datatype="latticeInt"/>
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</ports>

</submodel>

<submodel id="BF" name="Blood flow" stateful="optional">

<timescale delta="1 ms" total="1 s"/>

<spacescale delta="10 um" total="1 mm" dimensions="3"/>

<ports>

<in id="state_start" operator="finit" type="state"/>

<in id="boundary" operator="finit" datatype="latticeInt"/>

<out id="shear_stress" operator="Of" datatype="latticeDouble"/>

<out id="state_end" operator="Of" type="state"/>

</ports>

</submodel>

<submodel id="SMC" name="Smooth muscle cells">

<timescale delta="1 hr" total="4 weeks"/>

<spacescale delta="10 um" total="1 mm" dimensions="3"/>

<param id="n" value="500000"/>

<ports>

<in id="initial_positions" operator="finit" datatype="agentLocations"/>

<in id="shear_stress" operator="S" datatype="agentDouble"/>

<in id="drug_concentration" operator="S" datatype="agentDouble"/>

<out id="cell_positions" operator="Oi" datatype="agentFull"/>

</ports>

</submodel>

<submodel id="DD" name="Drug diffusion">

<timescale delta="1 min" total="10 min"/>

<spacescale delta="10 um" total="1 mm" dimensions="3"/>

<ports>

<in id="boundary" operator="finit" datatype="latticeInt"/>

<out id="drug_concentration" operator="Of" datatype="latticeDouble"/>

</ports>
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</submodel>

</definitions>

<topology>

<instance id="ic" submodel="INIT" domain="artery"/>

<instance id="blob" submodel="Blob" domain="artery.blood"/>

<instance id="bf" submodel="BF" domain="artery.blood"/>

<instance id="dd" submodel="DD" domain="artery.tissue"/>

<instance id="smc" submodel="SMC" domain="artery.tissue"/>

<instance id="voxel" mapper="voxelizer"/>

<instance id="add" mapper="gridCombine"/>

<instance id="out" mapper="ditributor"/>

<instance id="in" mapper="collector"/>

<coupling from="ic.cells" to="smc.initial_positions"/>

<coupling from="smc.cell_positions" to="voxel.cell_positions"/>

<coupling from="voxel.geometry" to="blob.geometry"/>

<coupling from="voxel.cell_mapping" to="in.cell_mapping"/>

<coupling from="voxel.geometry" to="add.geometrySmc"/>

<coupling from="blob.thrombus" to="add.geometryBlob"/>

<coupling from="add.geometry" to="distributor.geometry"/>

<coupling from="distributor.latticeBF" to="bf.boundary"/>

<coupling from="distributor.latticeDD" to="dd.boundary"/>

<coupling from="dd.drug_concentration" to="in.latticeDD"/>

<coupling from="bf.shear_stress" to="in.latticeBF"/>

<coupling from="in.cell_dd" to="smc.drug_concentration"/>

<coupling from="in.cell_bf" to="smc.shear_stress"/>

</topology>

</model>
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B Details on implementation for the hydrology ap-
plication

B.1 Dam break simulations

This section illustrates the 3D Free Surface flow submodel in case of the so-
called dam-break simulation. Three successive snapshots of the evolution
are shown.

Figure 17: Lattice Boltzmann simulations of a dam break.

B.2 cxa file of a simple coupling between two 1D canals

# configuration file for a MUSCLE CxA

abort "this is a configuration file for to be used with the MUSCLE bootstrap utility"

if __FILE__ == $0

# add build for this cxa to system paths (i.e. CLASSPATH)

m = Muscle.LAST

m.add_classpath "/home/IrigCan.jar"
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# configure cxa properties

cxa = Cxa.LAST

cxa.env["cxa_path"] = File.dirname(__FILE__)

# declare kernels

cxa.add_kernel(’sw1’, ’irigcan.SW1D_kernel’)

cxa.add_kernel(’sw2’, ’irigcan.SW1D_kernel’)

# parameters

# configure connection scheme

cs = cxa.cs

cs.attach(’sw1’ => ’sw2’ ) {

tie(’f1_out’, ’f1_in’)

tie(’f2_out’, ’f2_in’)

}

cs.attach(’sw2’ => ’sw1’) {

tie(’f1_out’, ’f1_in’)

tie(’f2_out’, ’f2_in’)

}

B.3 cxa file of a coupling between two 1D canals and two gates

# configuration file for a MUSCLE CxA

abort "this is a configuration file for to be used with the MUSCLE bootstrap utility"

if __FILE__ == $0

# add build for this cxa to system paths (i.e. CLASSPATH)

m = Muscle.LAST

m.add_classpath "$HOME/IrigCan.jar:$HOME/IrigCan.jar:$HOME/IrigCan.jar:$HOME/IrigCan.jar:"

# configure cxa properties

cxa = Cxa.LAST

cxa.env["cxa_path"] = File.dirname(__FILE__)
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# declare kernels

cxa.add_kernel(’SW1D_001’, ’irigcan.SW1D_kernel’)

cxa.add_kernel(’SW1D_002’, ’irigcan.SW1D_kernel’)

cxa.add_kernel(’GATE_001’, ’irigcan.Gate_kernel’)

cxa.add_kernel(’GATE_002’, ’irigcan.Gate_kernel’)

# parameters

# configure connection scheme

cs = cxa.cs

cs.attach(’SW1D_001’ => ’GATE_002’) {

tie(’f0_right’, ’f0_right’)

tie(’f1_out’, ’f1_in’)

}

cs.attach(’GATE_002’ => ’SW1D_001’) {

tie(’f2_out’, ’f2_in’)

}

cs.attach(’GATE_002’ => ’SW1D_002’) {

tie(’f1_out’, ’f1_in’)

}

cs.attach(’SW1D_002’ => ’GATE_002’) {

tie(’f0_left’, ’f0_left’)

tie(’f2_out’, ’f2_in’)

}

cs.attach(’SW1D_001’ => ’GATE_001’) {

tie(’f0_left’, ’f0_left’)

tie(’f2_out’, ’f2_in’)

}

cs.attach(’GATE_001’ => ’SW1D_001’) {

tie(’f1_out’, ’f1_in’)

}

cs.attach(’GATE_001’ => ’SW1D_002’) {

tie(’f2_out’, ’f2_in’)

}

cs.attach(’SW1D_002’ => ’GATE_001’) {

tie(’f0_right’, ’f0_right’)

D7.1 Adaptation of application-UNIGE-v1.2 Page 38 of 55



MAPPER - 261507

tie(’f1_out’, ’f1_in’)

}

B.4 The MUSCLE coupling Java code between 1D canal and
two gates

1

2 public class SW1D kernel extends muscle.core.kernel.CAController {
3

4 private int sizeX;
5 private int dx;
6 private double a;
7

8 @Override
9 public Scale getScale() {

10 DecimalMeasure dt = DecimalMeasure.valueOf(new BigDecimal(1), SI.SECOND);
11 DecimalMeasure dx = DecimalMeasure.valueOf(new BigDecimal(1), SI.METER);
12 return new Scale(dt, dx);
13 }
14 private ConduitEntrance<Double> f1 out;
15 private ConduitEntrance<Double> f2 out;
16 private ConduitEntrance<Double> f0 left;
17 private ConduitEntrance<Double> f0 right;
18 private ConduitExit<Double> f1 in;
19 private ConduitExit<Double> f2 in;
20

21 @Override
22 public Scale getScale() {
23 DecimalMeasure dt = DecimalMeasure.valueOf(new BigDecimal(1), SI.SECOND);
24 DecimalMeasure dx = DecimalMeasure.valueOf(new BigDecimal(1), SI.METER);
25 return new Scale(dt, dx);
26 }
27 private ConduitEntrance<Double> f1 out;
28 private ConduitEntrance<Double> f2 out;
29 private ConduitEntrance<Double> f0 left;
30 private ConduitEntrance<Double> f0 right;
31 private ConduitExit<Double> f1 in;
32 private ConduitExit<Double> f2 in;
33

34 @Override
35 protected void addPortals() {
36 f1 out = addEntrance(”f1 out”, 1, double.class);
37 f2 out = addEntrance(”f2 out”, 1, double.class);
38 f0 left = addEntrance(”f0 left”, 1, double.class);
39 f0 right = addEntrance(”f0 right”, 1, double.class);
40 f1 in = addExit(”f1 in”, 1, double.class);
41 f2 in = addExit(”f2 in”, 1, double.class);
42 }
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43

44 @Override
45 protected void execute() {
46

47 sizeX = 5;
48 dx = 1;
49 SW1D can1 = new SW1D(sizeX, dx);
50 can1.initLattice();
51 int nbriteration = 10;
52 String kernel name = getKernelBootInfo().getName();
53 System.out.println(kernel name + ”−−−−−−−−−−−−Starting: ”);
54 for (int j = 0; j < nbriteration; j++) {
55 can1.observation();
56 can1.test();
57 can1.propagation();
58 //Sending and receiving data
59 f0 left.send(can1.getf0(0));
60 f0 right.send(can1.getf0(sizeX − 1));
61 f1 out.send(can1.getf1(0));
62 f2 out.send(can1.getf2(sizeX − 1));
63 can1.setf1(0, f1 in.receive());
64 can1.setf2(sizeX − 1, f2 in.receive());
65 can1.printHH(kernel name, j);
66 }
67 System.out.println(kernel name + ”−−−−−−−−−−−−End ”);
68 }
69 }

This code is related to the SWD1 submodel. All the connexions between
this SWD1 kernel and the two gates are decalred in lines 14-19 and must
instantiate the Java class ConduitEntrance. Lines 27-32 declare the type
of data to be exchanged, namely that f0 left, f0 right, f1 out, f2 out are the
outputs of the kernel SWD1 and f1 in and f2 in are its two inputs. The data
type in this example is the double Java primitive data type. It’s worth re-
minding here that all the methods of the ”muscle.core.kernel.CAController”
class should be implemented in order to perform a computation on the
GridSpace2 platform, namely, the kernel execution code should be imple-
mented in the method execute() (line 45). There, we can see the SEL and
the data sending and receiving instructions. In line 50, the SWD1 object
”can1” is instantiated and it implements the methods Observation(), Colli-
sion(), Propagation(), BoundaryCondition() and the other needed param-
eters. The methods send()/receive() allow to send/receive data to/from a
declared conduit entrance. In one hand, lines 59-62 show how data are
sent from SWD1 to the two gates’ instances using the method send(). In
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the other hand, lines 63-64 are waiting to receive data from the two inputs
f1 in and f2 in.

B.5 The CxALite Java code of a coupling between two 1D canals
and two gates

1 public static void main( String[] args ) throws InterruptedException {
2 CxA cxa = new CxA( ”SW1D Simulation” );
3 // Create Kernels’ Instances
4 cxa.addKernel(GateLightKernel.class, ”Gate1” );
5 cxa.addKernel(GateLightKernel.class, ”Gate2” );
6 cxa.addKernel(SW1DLightKernel.class, ”SW1D1” );
7 cxa.addKernel(SW1DLightKernel.class, ”SW1D2” );
8

9 //Setup entrance connections
10 cxa.connect(”SW1D1.f1 out right”).to( ”Gate2.f1 in right”).with( ”conduit1” );
11 cxa.connect(”SW1D2.f2 out left”).to( ”Gate2.f2 in left”).with( ”conduit2” );
12 cxa.connect(”SW1D1.f2 out left”).to( ”Gate1.f2 in left”).with( ”conduit3” );
13 cxa.connect(”SW1D2.f1 out right”).to(”Gate1.f1 in right”).with( ”conduit4” );
14 cxa.connect(”Gate1.f1 out”).to(”SW1D1.f1 in”).with( ”conduit5” );
15 cxa.connect(”Gate1.f2 out”).to(”SW1D2.f2 in”).with( ”conduit6” );
16 cxa.connect(”Gate2.f2 out”).to(”SW1D1.f2 in”).with( ”conduit7” );
17 cxa.connect(”Gate2.f1 out”).to(”SW1D2.f1 in”).with( ”conduit8” );
18

19 // execute
20 cxa.execute();
21 }

The kernels of the coupling schema are declared in lines 4-7. Similary
to MUSCLE, all kernels must implememt a specific CxALite Java class.
Lines 10-17 prepare the entrances connections between all the kernels.
There, for sake of simplicity and optimization, the two outputs of the SWD1
submodel, connected to the same gate, are merged into one output. The
execution of the computation is done in line 20 on the current machine.

C Details on implementation: Comptational biology

C.1 Particle swarm optimization

The particle swarm optimization was chosen for the optimization process
in our GRN application. PSO is a population-based stochastic optimization
technique [30]. It is inspired from the social behaviour of animals such as
bird flocking or fish schooling. It has many similarities with evolutionary
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computation techniques, such as genetic algorithms (GA), such as the fact
the both algorithms are initialized with a population of random solutions
and search for an optimum by updating generations. Unlike GA, however,
PSO does not have any evolution operators such as crossover or mutation,
resulting in a fewer number of parameters for the particles. In PSO, the
potential solutions “fly” through the solution space by “following” the current
optimum particles.
A simple example scenario could be bird flocking: a group of birds are
randomly looking for food in an area. There is only one piece of food in the
area being searched (a unique minimum/maximum in the solution space).
None of the birds initially knows where the food is, however it is assumed
that each bird knows how far it is to the food at each time. The best strategy
to find the food in this scenario would be to follow the bird which is the
closest to the food.
To simulate this, each particle has a position in the search space and a
velocity. At every iteration, each particle is updated by following two or three
“best” values. The first one is the best solution (fitness) it has achieved so
far. This value is called pbest. Another “best” value that is tracked by the
particle swarm optimizer is the best value obtained so far by any particle in
a population. This best value is a global best and is called gbest. When
a particle takes part of the population as its topological neighbours, the
best value is a local best and is called lbest. After finding these values, the
particle updates its velocity and positions as such:

v = v + c1rand()(pbest− present) + c2rand()(lbest− present)+

c3rand()(gbest− present) (1)

present = present + v (2)

where v is the particle velocity, present is the current particle position (cur-
rent solution), pbest, lbest and gbest are defined as stated before, rand() is
a random number in the interval (0, 1) and c1, c2 and c3 are learning factors;
usually c1 = c2 = c3 = 2.
A simplified pseudocode of a typical PSO implementation is the following:
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For each particle

Initialize particle

End

Do

For each particle

Calculate fitness value

If the fitness value is better than the pbest

Set current value as the new pbest

End

Choose the particle with the best fitness value as the gbest

For each particle

Calculate particle velocity

Update particle position

End

While maximum iterations or minimum error criteria is not attained

We distinguish between two approaches inspired from evolutionary com-
puting: insular evolutionary algorithms and cellular evolutionary algorithms:

• Insular evolutionary algorithms are based on a spatial or topological
organization in which a genetic population is divided into subpopu-
lations (islands, regions) that are optimized semi-independently from
each other. In this approach [32] individuals periodically migrate be-
tween island subpopulations in order to overcome the problems as-
sociated with a single population becoming stuck in a local minimum
and thus failing to find the global minimum.

• Cellular evolutionary algorithms are based on a spatially distributed
population in which genetic interactions may take place only in the
closest neighbourhood of each individual [29] [32]. Here, individuals
are usually set up in a lattice-like topology structure.

Both of these approaches can be seen in Figure 18 where we have four
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Figure 18: PSO running with four islands

islands, each containing a lattice of particles (each particle has four neigh-
bours). The islands exchange particles in a ring topology.

C.2 Run-time view of the first GRN prototype

First, a short reminder on the terminology: each particle in the PSO imple-
mentation will contain a set of parameters, so it will be a potential solution
to our optimization problem. In MMS terms, our islands will be submod-
els, so the coupling issue will only apply to how the communication across
our islands will occur. We employ a number of mappers and conduits for
enabling the communication between our submodels (see Figure 15 for the
coupling topology). We list the content of the cxa.rb for a simulation running
two islands:
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abort "this is a configuration file for to be used with the MUSCLE utility"

if __FILE__ == $0

cxa = Cxa.LAST

cxa.add_kernel(’island1’, ’Island’)

cxa.add_kernel(’island2’, ’Island’)

cxa.add_kernel(’optimalIn’, ’OptimalIn’)

cxa.add_kernel(’fitEval’, ’FitnessEvaluator’)

cxa.add_kernel(’reinitiate’, ’Reinitiate’)

cs = cxa.cs

cs.attach(’island1’ => ’island2’){

tie("sendParticlesFromIsland", "getParticlesInIsland")}

cs.attach(’island2’ => ’island1’){

tie("sendParticlesFromIsland", "getParticlesInIsland")}

cs.attach(’island1’ => ’optimalIn’){

tie("sendGbestFromIsland", "getGBestInOptimalIn")}

cs.attach(’island1’ => ’optimalIn’){

tie("sendContinueSimulationFromIsland", "getContinueSimulationInOptimalIn")}

cs.attach(’island2’ => ’optimalIn’){

tie("sendGbestFromIsland", "getGBestInOptimalIn")}

cs.attach(’island2’ => ’optimalIn’){

tie("sendContinueSimulationFromIsland", "getContinueSimulationInOptimalIn")}

cs.attach(’optimalIn’ => ’fitEval’){

tie("sendGBestsFromOptimalIn", "getGBestsInFitnessEvaluator")}

cs.attach(’fitEval’ => ’reinitiate’){

tie("sendContinueSimulationFromFitnessEvaluator", "getContinueSimulationInReinitiate")}

cs.attach(’fitEval’ => ’reinitiate’){

tie("sendGBestFromFitnessEvaluator", "getGBestInReinitiate")}
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cs.attach(’reinitiate’ => ’island1’){

tie("sendGBestFromReinitiate1", "getGbestInIsland")}

cs.attach(’reinitiate’ => ’island1’){

tie("sendContinueSimulationFromReinitiate1", "getContinueSimulationInIsland")}

cs.attach(’reinitiate’ => ’island2’){

tie("sendGBestFromReinitiate2", "getGbestInIsland")}

cs.attach(’reinitiate’ => ’island2’){

tie("sendContinueSimulationFromReinitiate2", "getContinueSimulationInIsland")}

m = Muscle.LAST

m.env["Xmx"] = "768m"

m.env["Xms"] = "16m"

m.env["Xss"] = "16m"

m.add_classpath File.dirname(__FILE__)+"/../build"

m.add_libpath File.dirname(__FILE__)+"/../build"

m.add_classpath File.dirname(__FILE__)+"/../build/libsmblj.jar"

m.add_classpath File.dirname(__FILE__)+"/../build/JavaPlot.jar"

m.add_classpath File.dirname(__FILE__)+"/../build/xpp3_min-1.1.4c.jar"

m.add_classpath File.dirname(__FILE__)+"/../build/xstream-1.3.1.jar"

Inside the islands, each particle communicates with its immediate neigh-
bours at each iteration. Particles are grouped in a lattice-like structure,
where each particle will have 4 neighbours. If the groups of particles in the
islands are too big, the communications can be set to be less frequent. So,
for example, every iteration there is a send/receive between each particle
and its neighbours, then every 100 iterations particles send their best value
and receive the global best within the whole island, and then every 300
iterations the global for all islands is communicated to every individual.
At the start of the simulation, each island initializes its particles with a ran-
dom position. It does so by reading the content of an SBML file, which
contains a skeleton model of the GRN we want to reverse-engineer, and
extracting the list of parameters. It then starts executing the PSO loop
(updating the velocities and positions of the particles). After the required
number of steps has been achieved, the islands exchange particles among
themselves. For this, the particles that will be sent will are represented as
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String objects and sent via MUSCLE’s routines.
After this, the islands send their gbest values to the Fitness Evaluator sub-
model via the Optimal In mapper to evaluate whether the simulation can
stop (if any of the gbest values has a smaller fitness than the desired error).
There is also a maximum number of simulations defined. If this number was
reached, the Fitness Evaluator will signal that the simulation will stop. Oth-
erwise, if none of the optimal particles has a small enough fitness, it will
send the best of these particles as the new gbest to the islands, through
the Reinitiate mapper.
The only input that the system needs is the SBML file containing the equa-
tions that need to be optimized and the experimental data used as com-
parison in the fitting step. The output is an SBML model containing the
optimized values of the parameters in our equations, which in our case will
be the global best value among all islands. The program will stop either
when a preset maximum number of iterations has been reached (no out-
put will be given in this case, or the output will be the report of a failure),
or when the fitness of the global best is under a preset threshold value, in
which case the program will also output this value.

D Description of the Multiscale Modeling Language
(MML)

D.1 Introduction

The idea behind the multiscale modeling language (MML), to have a lan-
guage to uniformly describe multiscale models and their computational im-
plementation on abstract level, was first proposed by Falcone et al. [36].
Within the MAPPER project this idea can be tuned and expanded given the
example applications of the project participants.
Two representations have been selected for a multiscale modeling lan-
guage: a graphical one, simply denoted by gMML, and a textual one, using
XML, called xMML. gMML can capture a large part of the model description,
however, for a complete and exact description xMML is also necessary.
Both gMML and xMML have their roots in the Complex Automata formal-
ism [37, 38] which describes multiscale coupled cellular automata. Notably,
from this formalism the submodel execution loop (SEL) and the scale sep-

D7.1 Adaptation of application-UNIGE-v1.2 Page 47 of 55



MAPPER - 261507

aration map (SSM) are re-used.

D.2 Terminology

In this section we will use a following terminology:

MML the high level concept of the language that describes single scale
submodels and their couplings. It is a concept for modelers and has
several representations.

xMML the XML representation of MML that contains all information about
application structure.

gMML the graphical representation of MML that contains only part of infor-
mation about application structure, useful for modelers and applica-
tion developers.

SSM a graphical scale separation map aids visual inspection of scales
used and the separation between them in a multiscale model. SSM is
meant for modelers that should be able to present an model to their
judgement in a way that serve the visual goal. SSM is not meant for
computational (execution) purposes.

D.3 Multiscale modeling language elements

D.3.1 Submodel execution loop

The submodel execution loop (SEL) regulates and unifies the execution
flow within submodels. It is formed from the basis that all submodels will
have an initialization, possibly multiple iterations of solving and finalization.
Moreover, during each of these phases we can define whether the submod-
els may send or receive data from other submodels. In pseudocode, the
SEL is as follows:

t:= t_0

f:= f_init(t)

WHILE{t - t_0 < T}

O_i(f, t)

t := t + Delta_t

f := S(f, t)
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Figure 19: A simplified example of the gMML of ISR3D.

f := B(f, t)

ENDWHILE

Operators are finit, Oi, B, S, and Of for initialization, intermediate obser-
vation, boundary condition calculation, solving step, and final observation
respectively. Operators finit, B, and S are allowed to receive data and Oi

and Of to send data. T is the end time for the submodel and theta is the
time step. Coupling templates are defined as couplings between the oper-
ator of one submodel to the operator of another.

D.4 Graphical representation (gMML)

In the graphical representation MML, UML icons are used to show differ-
ent couplings. An simplified example of the In-stent restenosis 3D model
(ISR3D) is shown in Figure 19.
First of all, a submodel instance is shown as a rectangular box with its
name inside. If there are multiple instances of the same submodel each in-
stance should have its own unique name and have a suffix between angled
brackets of the submodel name, like so: instanceName¡SUBMODEL¿.
A coupling between two submodels is shown as an connector with a tail
and head styled differently given the operators of the coupling template.
See Figure 20 for which operators correspond to which tail or head icon.
A label can be added to a connector to show what data is transferred in this
coupling.
Originally the coupling had to be placed on a certain side of the submodel
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Figure 20: The icons head and tail icons of gMML.

[36]. Due to difficulty in reading, this constraint has been lifted.

D.5 Textual representation (xMML)

The XML format xMML is currently at version 0.3.2. XML was chosen as a
well-known, human-writable, machine-readable standard that promotes in-
teroperability. It is described by both a W3C XML Schema and a Document
Type Definition.
In this version, xMML contains information about the model such as a ver-
sion and a description. Then each of the datatypes, converters and sub-
models used in that model are defined, where each denote one implemen-
tation of a its type.
The submodel definition consists of a description, its scales, ports and im-
plementation details. The scales are specified per dimension and give an
indication of the scale separation involved. The ports are sending or receiv-
ing and coupled to a specific SEL operator, and send a specific datatype.
Implementation details may give a scheduler hints at where to schedule
different submodels.
When the submodels are defined, the coupling topology may be created,
defining first submodel instances and then couplings between those in-
stances. Submodel instances may override the scales that were given dur-
ing submodel definition. Couplings are defined with the sending port of one
submodel and the receiving port of the other. As the datatypes sent over
the couplings have a defined size, a communication cost can be estimated
for each of the couplings.
The xMML format thus specifies the entire multiscale model and contains
almost all information to be able to run a multiscale application.
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