

Distributed Multiscale Simulation of Nanocomposites: Demonstrating a loosely coupled scenario.

The Mapper project receives funding from the EC's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° RI-261507.

Overview

- Introduction
- Demonstration
 - Technical Overview
 - Application Hosting Environment
 - QosCosGrid Middleware
- End of demonstration
- Explanation of the science + future plans

Introduction - nanocomposites

- Mixture of properties of two different materials to give enhanced performance.
- Improved fire retardant properties.
- Similar performance to other composite materials at much lower filler volumes.

Scientific Motivation

Example application:

- Problem in oil drilling: Water-based drilling fluid + reactive shale = swelling.
- This is caused by montmorillonite content in the clay.
- We seek to understand the properties of claypolymer interactions.

Current state

- QM simulations can resolve phenomena at high accuracy for parts of single platelets.
- Atomistic codes can resolve a few platelets for a few nanoseconds at most.
 - Not enough to tackle the problem.
- Course-grained simulations lack the accuracy to directly resolve surface interactions.
- Solution: go distributed multiscale!

Scale Separation Map

Demonstration

Required functionalities

- Simulation engines (CPMD,LAMMPS).
- Data conversion scripts (Bash, Perl).
- Workflow composition (GridSpace/MAD).
- Advance reservation (QCG Computing).
- File staging (AHE).
- Job submission interface to the heterogeneous e-infrastructure (GS+AHE).

Technical components

- AHE is a tool for building Science Gateways
 - Lightweight hosting environment for running unmodified applications on grid and local resources.
 - Community model: expert user installs and configures an application and uses the AHE to share it with others.
 - Simple clients with very limited dependencies.
 - No intrusion onto target grid resources.
 - One of the TeraGrid approved science gateways.

AHE – Bridging the Gap

- AHE is used by several international communities.
 - The two main AHE publications have been cited at least 80 times since 2007.
- Client is easy to install
 - No other middleware required.
- Version 3.0 will support:
 - Urgent computing using SPRUCE.
 - Mechanisms to hide the complexity of certificate management to the user.

- Guarantees the requested level of Quality of Service
 - number and characteristics of resources,
 - execution time window

by using an advance reservation mechanism

- EGI (PL-Grid, Zeus cluster) and national/campus (UCL, mavrino cluster) infrastructures (QCG-Broker).
- Reduction of the overall completion time of the workflow experiment (QCG-Broker).
- Efficient execution and management of tasks on EGI and UCL resources (QCG-Computing).

UCL cluster	queueing time	CPMD				
EGI cluster			queueing time	LAMMPS		
PRACE machine	e				queueing time	LAMMPS

- To accurately resolve the behavior of clay-polymer interactions, we need to simulate a large number of very thin platelets at high resolution.
- No single code is able to do this (many resort to periodic boundary conditions on short length scales or using smaller sheets).

- Our distributed multiscale application allows us to address several important science questions, e.g.:
 - Do periodic boundary conditions become limiting at large length scales?
 - How does the clay interact with polymers on the sheet edges and in undulations?
 - How do QM effects influence these interactions?

Plans for the future

- Validate the coupling on a scientific level.
- Scale up the scenario to resolve sufficiently large systems consisting of dozens of accurately resolved clay sheets.
- Investigate the aforementioned science questions.
- Continue our 40.5M core hour PRACE grant on JUGENE into a multi-site allocatiion.

UCL

d.groen@ucl.ac.uk

#