
Multiscale-Multiscience model-
ing: concepts and methodology
Bastien Chopard

University of Geneva, Switzerland

MAPPER Seasonal School, UCL, Feb. 1, 2012

1

Main Contributors

I Joris Borgdorff, UvA

I Jean-Luc Falcone, UNIGE

I Alfons Hoekstra, UvA

2

Multiscale, multiscience modeling framework

I Propose a modeling and simulation framework for multiscale,
multisciences complex systems

I Theorectical concepts : Complex Automata approach (CxA)
I A Multiscale Modeling Language : MML
I Software environment : The MUSCLE coupling library

3

Multiscale, multiscience modeling framework

I Propose a modeling and simulation framework for multiscale,
multisciences complex systems

I Theorectical concepts : Complex Automata approach (CxA)

I A Multiscale Modeling Language : MML
I Software environment : The MUSCLE coupling library

4

Multiscale, multiscience modeling framework

I Propose a modeling and simulation framework for multiscale,
multisciences complex systems

I Theorectical concepts : Complex Automata approach (CxA)
I A Multiscale Modeling Language : MML

I Software environment : The MUSCLE coupling library

5

Multiscale, multiscience modeling framework

I Propose a modeling and simulation framework for multiscale,
multisciences complex systems

I Theorectical concepts : Complex Automata approach (CxA)
I A Multiscale Modeling Language : MML
I Software environment : The MUSCLE coupling library

6

Motivations

I Very few methodological papers in the literature.

I Multiscale strategies are usually entangled with applications.

I Can we develop a framework that help the design and
deployment of complex multiscale-multiscience applications ?

7

Motivations

I Very few methodological papers in the literature.

I Multiscale strategies are usually entangled with applications.

I Can we develop a framework that help the design and
deployment of complex multiscale-multiscience applications ?

8

Motivations

I Very few methodological papers in the literature.

I Multiscale strategies are usually entangled with applications.

I Can we develop a framework that help the design and
deployment of complex multiscale-multiscience applications ?

9

From a multiscale systems to many single-scale
systems :

Let us consider a system of size L evolving over a time T .
Computation with space and time discretization ∆x and ∆t

Resolved spatial scales : ∆x < ξ < L and
Resolved temporal scales : ∆t < τ < T

Scale Map

10

From a multiscale systems to many single-scale
systems :

Let us consider a system of size L evolving over a time T .
Computation with space and time discretization ∆x and ∆t

Resolved spatial scales : ∆x < ξ < L and
Resolved temporal scales : ∆t < τ < T

Scale Map

11

From a multiscale systems to many single-scale
systems :

Let us consider a system of size L evolving over a time T .
Computation with space and time discretization ∆x and ∆t

Resolved spatial scales : ∆x < ξ < L and
Resolved temporal scales : ∆t < τ < T

Scale Map

12

From a multiscale systems to many single-scale
systems :

Scale Separation Map

I Submodels

I Smart Conduits

13

The CxA approach and beyond

I A multiscale problem is a graph of coupled (single-scale)
submodels

I The submodels may implement many different numerical
methods

I but they are decribed with the same generic execution loop

I Submodels should not know about the rest of the system :
they are autonomous components

I Only the smart conduits know about the properties of the
submodels they connect.

A. G. Hoekstra, A. Caiazzo, E. Lorenz, J.-L. Falcone, and B. Chopard. Complex Automata : multi-scale Modeling

with coupled Cellular Automata, in Modelling Complex Systems by Cellular Automata, chapter 3, Springer Verlag,

2010.

14

Coupling topologies (workflow)

15

I. Relation between the scales

I The Scale Separation Map (SSM) specifies the relation
between the sub-models in five regions :.

I There is more than the standard micro-macro relation and
more than than the “bi-scale” modeling

time scales

sp
ac

e
sc

al
es A

16

I. Relation between the scales

I The Scale Separation Map (SSM) specifies the relation
between the sub-models in five regions :.

I There is more than the standard micro-macro relation and
more than than the “bi-scale” modeling

time scales

sp
ac

e
sc

al
es A

B
Partial / full
overlap

17

I. Relation between the scales

I The Scale Separation Map (SSM) specifies the relation
between the sub-models in five regions :.

I There is more than the standard micro-macro relation and
more than than the “bi-scale” modeling

time scales

sp
ac

e
sc

al
es A

B
Partial / full
overlap

Cspace separation

18

I. Relation between the scales

I The Scale Separation Map (SSM) specifies the relation
between the sub-models in five regions :.

I There is more than the standard micro-macro relation and
more than than the “bi-scale” modeling

time scales

sp
ac

e
sc

al
es A

B
Partial / full
overlap

Cspace separation

D

time separation

19

I. Relation between the scales

I The Scale Separation Map (SSM) specifies the relation
between the sub-models in five regions :.

I There is more than the standard micro-macro relation and
more than than the “bi-scale” modeling

time scales

sp
ac

e
sc

al
es A

B
Partial / full
overlap

C

D

time separation

E

time and space separation

20

I. Relation between the scales

I The Scale Separation Map (SSM) specifies the relation
between the sub-models in five regions :.

I There is more than the standard micro-macro relation and
more than than the “bi-scale” modeling

time scales

sp
ac

e
sc

al
es A

B
Partial / full
overlap

C

D

time separation

E

time and space separation

F

time and space separation

21

II. Relation between computational domains

single-Domain (sD)

CA1

CA
2

(Example : advection-diffusion, suspension flows)

multi-Domain (mD)

model 1Dh(x)

22

III Generic“Submodel Execution Loop”

I finit is for initialization

I S is for one iteration of the
Solver

I B is to specify the
Boundaries

I Oi is for Intermediate
Observation

I Of is for Final Observation

submodel

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

23

IV. Coupling Templates

I One has several operators in the submodel execution loop

I Oi , Of as origin

I finit , B and S as possible destinations

submodel 1 submodel 2

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

submodel 1 submodel 2

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

24

Example : Coral growth

Coral grows due to nutrient brought by water flow

25

Coupling Speedup : Coral growth

Fluid is computed for

Tf

∆tf

Tc

∆tc
iterations instead of

Tc

∆tf

Speedup :

S =
∆tc

Tf
>> 1

26

Classification of problems
I relation in the Scale Separation Map

I single-Domain (sD) or multi-Domain (mD) relation

I coupling templates

overlap separation

o
v

e
rl

a
p

s
e

p
a

ra
ti

o
n

TIME

S
P

A
C

E

single domain

single domain

single domain

single domain

multi domain

multi domain

multi domain

multi domain

snow transport
advection-diffusion

...

Fluid-Structure
Grid transition

...

Forest-Savannah-Fire
...

Coral Growth
...

Algae-Water
...

Wave propagation
...

Bio-Physics
Tissue-Fluid

Suspension

O_i to S O_i to B O_i to f_init
O_f to B

O_i to f_init
O_f to S

O_i to S O_i to B

O_i to f_init
O_f to B

O_i to f_init
O_f to S

27

Relation between the scales separation and the
coupling templates

We consider two submodels, X and Y with single-domain (sD)
relation

name coupling temporal scale relation

interact OX
i → SY overlap

call OX
i → f Y

init X larger than Y
realease OY

f → SX Y smaller than X
relay OX

f → f Y
init any

When the relation between computational domains is
multi-domain, change S → B

Thus, the relation in the SSM determines the workflow

28

Mathematical formulation of couplings

SEL operators can be used to express coupling strategies and
estimate errors

I Time splitting

I Coarse graining

I Amplification

I ...

29

Time splitting

Assume we have a sD problem with the following SEL

P∆tC∆t = P∆tC
(1)
∆t C

(2)
∆t

Then if C
(1)
∆t acts at a longer time scale than C

(2)
∆t we may want to

approximate

[P∆tC∆t]M ≈ PM∆tC
(1)
M∆t [C

(2)
∆t]M

30

Coarse graining

This strategy consists in expressing a sD problem as

[P∆xC∆x]n ≈ Γ−1[P2∆xC2∆x]n/2Γ

where Γ is a projection operator (implemented in the smart
conduit)

31

Amplification

We consider a process acting at low intensity but for a long time,
in a time periodic environment. For instance a growth process in a
pulsatile flow.
We have two coupled (mD) processes which are iterated n >> 1
times

[P(1)C (1)]n and [P(2)C (2)(k)]n

where k expresses the intensity of process C (2).
If the period of process C (1) is m << n, we can approximate the
above evolution as

[P(1)C (1)]m and [P(2)C (2)(k ′)]m

with k ′ = (n/m)k, for a linear process.

32

Reaction-Diffusion with time splitting

Diffusion Reaction

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)
log(time-scales)

spatial scales

R D

logτ
D

logτ
R

log∆
R

log∆
D

logΤ
D

∆
x

L
x

log M

log σ

A. Caiazzo, J-L. Falcone, B. Chopard and A. G. Hoekstra, Asymptotic analysis of Complex Automata models for

reaction-diffusion systems, Applied Numerical Mathematics 59 pp. 2023–2034 (2009)

33

CxA Execution Model

submodel 1 submodel 2

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

f=f_init

while(not stop)

O_i(f)

f=S(f)

f=B(f)

endwhile

O_f(f)

I Submodels are autonomous processes
I Asynchronous communication through the conduits :

I Data is written to the conduit as soon as ready.
I Submodels read the data they need from the conduits (wait if

needed).

I Only local interactions are necessary : parallelization is
possible and natural

I Propagation of the termination condition

34

Send-Receive through the conduits

Example of the Coral submodel :

while not EndConditions

DomainConduit.send(D)

f := B(f)

velocityMap := VelocityConduit.receive()

f := S(f,velocityMap)

end

DomainConduit.stop()

myStop()

35

An implementation : the MUSCLE environment
(Jan Hegwald, TUB)

I Jade (Java Agent based lightweight middleware) as a platform
to build the coupling software.

I More general than the CxA methodology

I Allows us to couple submodels (and legacy codes in C,
Fortran).

I A “Jade coordinator” is used to setup the system then goes
away,

I Needs a configuration file (CxA file)

36

Biomedical application : in-stent restenosis

37

Restenosis : the full Scale Separation Map

38

Restenosis : Scale Separation Map
I A 3-submodel simplification (time separation is achieved)

D Evans, PV Lawford, J Gunn, D Walker, DR Hose, RH Smallwood, B Chopard, M Krafczyk, J Bernsdorf, A

Hoekstra. The Application of Multi-Scale Modelling to the Process of Development and Prevention of Stenosis in a

Stented Coronary Artery. Phil. Trans. R. Soc. A 366, pp. 3343–3360, 2008

39

MML : a Multiscale Modeling Language

I the SSM turned out to be very powerful to design applications

I Formalize the methodology into a language : high level
representation of a complex multiscale application

I Allows scientists with different backgrounds and geographical
locations to better co-develop a multiscale application

I Provide blueprints of a complex multiscale application that
can be further augmented by other groups

I Standard for publication

I Automatic execution on a computing resources

40

MML : a descriptive language

I SSM

I gMML

I xMML

J-L Falcone, B. Chopard and A. Hoekstra, MML : towards a Multiscale Modeling Language,

Procedia Computer Science 1 :11, 819-826, 2010

41

Main ingredients of MML

I Sub-models

I Spatial and temporal scales

I Computational domain relation

I Coupling templates

I Smart conduits

42

Smart conduits

The coupling between submodels is achieved with three
computational elements

I conduit : one way, point to point

I filter : state-full conduit, performing data transformation

I mapper : multi-port, data-transformation device.

I Smart conduits can be parametrized and stored in a repository
to be reused

43

Filter

1. Transfer information between subsystems:

CA1 CA2

Data elements are sent with timestamps

44

Filter

CA1 CA2conduit

2. Write data to conduit, interpolate and rescale:

Data elements are sent with timestamps

45

Filter

3. Read from conduit the boundary values:

CA1 CA2

Data elements are sent with timestamps

46

Mappers

I In principle they are not submodels

I Useful to optimize a coupling (do not repeat twice the same
calculation, build complex coupling)

We propose two types of mappers : fan-in and fan-out. The output
is produced when all inputs are present

fan-out
A f(A)

g(A)

h(A)

fan-in
A f(A,B,C)

C

B

47

gMML

Graphical representation (UML-like)

I Submodel are shown as rectangles

I Conduits are shown as lines with their extremities showing the
coupling template (operators in the SEL).

I Filters are shown as round square across a conduit

I Mappers are shown as hexagons

I Submodel sharing the same computational domain (sD) can
be surrounded by a dashed line.

48

gMML : an example

49

MAD tool (Cyfronet, PL)

The irrigation canal application
50

xMML

I XML-like language

I Full description language

I Can be generated from gMML (MAD tool) and vice-versa

I From application description to “glue-code” production and
scheduling

51

xMML example

<model id="suspensionFlow">

<description>

Flow with a suspension of particles. The conentration

of particles affect locally the flow viscosity and the

particles are advected by the flow.

</description>

<submodel id="flow">

<spacescale dimension="2" dx="1 mm" lx="10 cm" ly="30 cm" />

<spacescale dt="1 ms" t="1 min" />

<ports>

<in id="concentration" operator="C" dt="1 ms" dx="1 mm" />

<out id="velocity" operator="Oi" dt="10 ms" dx="1 mm" />

</ports>

</submodel>

52

xMML example continued

<submodel id="advectionDiffusion">

<spacescale dimension="2" dx="1 mm" lx="10 cm" ly="30 cm" />

<spacescale dt="10 ms" t="1 min" />

<ports>

<in id="velocity" operator="C" dt="10 ms" dx="1 mm" />

<out id="concentration" operator="Oi" dt="10 ms" dx="1 mm" />

</ports>

</submodel>

<coupling from="flow.velocity" to="advectionDiffusion.velocity" />

<coupling from="advectionDiffusion.concentration" to="flow.concentration">

<filter kind="timeInterpolation" />

</coupling>

</model>

53

From MML to execution
coupling consitency, deadlock detection, automatic scheduling
(execution graph)

54

Multiscale APPlications on European
e-infRastructures

From applications → MML → computing infrastructure

I Running tightly coupled Distributed Multiscale
Applications using several supercomputing platforms

I Deploy middleware implementing the CxA-MML-MUSCLE
approach on the e-Infrastructure (EGI, PRACE, DEISA)

http ://www.mapper-project.eu

55

Application portfolio

I Participants : UvA NL, UCL UK, UU UK, PSNC PL,
CYFRONET PL, LMU DE, UNIGE CH, CHALMERS SE,
MPG DE

56

Simulation of irrigation canals
Develop a simulation tools for the optimal management of
irrigation canals

supply demand demand demand
demand

demand

L. Lefèvre, E. Mendes et al. (ESISAR Valence, INP-Grenoble)

57

Submodels

h(x)

f2

f1

f0

58

3D, free surface

59

Coupling 1D SW models (Mohamed Ben
Belgacem)

60

MAD tool (Cyfronet, PL)

61

Submodel (kernel) and interface to MUSCLE

SW1D can1;= new SW1D(L, dx, dt, width, 0.03d);

for (int j = 0; j < nbriteration; j++) {

can1.collision();

can1.propagation();

//Observation: Collects data to send to the Gate

info = new HashMap<String, Double>();

info.put("f1", can1.getf1(nx));

info.put("h", can1.getH()[nx]);

f_out.send(info);//send the Data to the Gate

// Boundary: receive the data from the Gate

double fin = f_in.receive();

can1.setf2(nx, fin);// update the distribution function

can1.bounceBack(); // boundary at the left end

}

62

MUSCLE Coupling script

declare kernels

cxa.add_kernel(’SW1D1’, ’com.unige.irigcan.kernel.d1.SW1D_1B_kernel’)

cxa.add_kernel(’SW1D2’, ’com.unige.irigcan.kernel.d1.SW1D_2B_kernel’)

cxa.add_kernel(’SW1D3’, ’com.unige.irigcan.kernel.d1.SW1D_1B_kernel’)

cxa.add_kernel(’Gate’, ’com.unige.irigcan.junction.Gate_kernel’)

cxa.add_kernel(’Spill’, ’com.unige.irigcan.junction.Spill_kernel’)

63

MUSCLE Coupling script (continued)

configure connection scheme

cs = cxa.cs

cs.attach(’SW1D1’ => ’Gate’) { tie(’f_out’, ’f1_in’)}

cs.attach(’SW1D2’ => ’Gate’) { tie(’f_out’, ’f2_in’)}

cs.attach(’Gate’ => ’SW1D1’) { tie(’f1_out’, ’f_in’)}

cs.attach(’Gate’ => ’SW1D2’) { tie(’f2_out’, ’f_in’)}

#

cs.attach(’SW1D2’ => ’Spill’) { tie(’f_out_X’, ’f1_in’)}

cs.attach(’SW1D3’ => ’Spill’) { tie(’f_out’, ’f2_in’)}

#

cs.attach(’Spill’ => ’SW1D2’) { tie(’f1_out’, ’f_in_X’)}

cs.attach(’Spill’ => ’SW1D3’) { tie(’f2_out’, ’f_in’)}

See simulation...

64

Thank you for your attention

65

	Intro
	Main Contributors
	Multiscale, multiscience modeling framework
	Multiscale, multiscience modeling framework
	Multiscale, multiscience modeling framework
	Multiscale, multiscience modeling framework

	CxA
	Motivations
	Motivations
	Motivations
	From a multiscale systems to many single-scale systems:
	From a multiscale systems to many single-scale systems:
	From a multiscale systems to many single-scale systems:
	From a multiscale systems to many single-scale systems:
	The CxA approach and beyond
	Coupling topologies (workflow)
	I. Relation between the scales
	I. Relation between the scales
	I. Relation between the scales
	I. Relation between the scales
	I. Relation between the scales
	I. Relation between the scales
	II. Relation between computational domains
	III Generic``Submodel Execution Loop''

	Coupling Templates
	IV. Coupling Templates

	Coral Growth
	Example: Coral growth
	Coupling Speedup: Coral growth

	Classification
	Classification of problems
	Relation between the scales separation and the coupling templates

	Coupling Strategies
	Mathematical formulation of couplings
	Time splitting
	Coarse graining
	Amplification

	Reaction-Diffusion
	Reaction-Diffusion with time splitting

	Execution model
	CxA Execution Model
	Send-Receive through the conduits

	Software
	An implementation: the MUSCLE environment (Jan Hegwald, TUB)

	In-stent restenosis
	Biomedical application: in-stent restenosis
	Restenosis: the full Scale Separation Map
	Restenosis: Scale Separation Map

	MML
	MML: a Multiscale Modeling Language
	MML: a descriptive language
	Main ingredients of MML
	Smart conduits
	Filter
	Filter
	Filter
	Mappers
	gMML
	gMML: an example
	MAD tool (Cyfronet, PL)
	xMML
	xMML example
	xMML example continued
	From MML to execution

	MAPPER
	Multiscale APPlications on European e-infRastructures
	Application portfolio

	Irrigation Canal
	Simulation of irrigation canals
	Submodels
	3D, free surface
	Coupling 1D SW models (Mohamed Ben Belgacem)
	MAD tool (Cyfronet, PL)
	Submodel (kernel) and interface to MUSCLE
	MUSCLE Coupling script
	MUSCLE Coupling script (continued)

