

Multiscale-Multiscience modeling: concepts and methodology Bastien Chopard

University of Geneva, Switzerland

CAPACITIES

MAPPER Seasonal School, UCL, Feb. 1, 2012

Main Contributors

- \blacktriangleright Joris Borgdorff, UvA
- \blacktriangleright Jean-Luc Falcone, UNIGE
- \blacktriangleright Alfons Hoekstra, UvA

 \triangleright Propose a modeling and simulation framework for multiscale, multisciences complex systems

- \triangleright Propose a modeling and simulation framework for multiscale, multisciences complex systems
	- \triangleright Theorectical concepts : Complex Automata approach (CxA)

- \triangleright Propose a modeling and simulation framework for multiscale, multisciences complex systems
	- \triangleright Theorectical concepts : Complex Automata approach (CxA)
	- \triangleright A Multiscale Modeling Language : MML

- \triangleright Propose a modeling and simulation framework for multiscale, multisciences complex systems
	- \triangleright Theorectical concepts : Complex Automata approach (CxA)
	- \triangleright A Multiscale Modeling Language : MML
	- \triangleright Software environment : The MUSCLE coupling library

Motivations

 \blacktriangleright Very few methodological papers in the literature.

Motivations

- \triangleright Very few methodological papers in the literature.
- \blacktriangleright Multiscale strategies are usually entangled with applications.

Motivations

- \triangleright Very few methodological papers in the literature.
- \triangleright Multiscale strategies are usually entangled with applications.
- \triangleright Can we develop a framework that help the design and deployment of complex multiscale-multiscience applications ?

> Let us consider a system of size L evolving over a time T. Computation with space and time discretization Δx and Δt

> Let us consider a system of size L evolving over a time T . Computation with space and time discretization Δx and Δt

Let us consider a system of size L evolving over a time T . Computation with space and time discretization Δx and Δt

 \blacktriangleright Submodels

 \blacktriangleright Smart Conduits

The CxA approach and beyond

- \triangleright A multiscale problem is a graph of coupled (single-scale) submodels
- \triangleright The submodels may implement many different numerical methods
- \triangleright but they are decribed with the same generic execution loop
- \triangleright Submodels should not know about the rest of the system : they are autonomous components
- \triangleright Only the smart conduits know about the properties of the submodels they connect.

A. G. Hoekstra, A. Caiazzo, E. Lorenz, J.-L. Falcone, and B. Chopard. Complex Automata : multi-scale Modeling with coupled Cellular Automata, in Modelling Complex Systems by Cellular Automata, chapter 3, Springer Verlag, 2010.

Coupling topologies (workflow)

- \blacktriangleright The Scale Separation Map (SSM) specifies the relation between the sub-models in five regions :.
- \blacktriangleright There is more than the standard micro-macro relation and more than than the "bi-scale" modeling

II. Relation between computational domains

single-Domain (sD)

(Example : advection-diffusion, suspension flows)

multi-Domain (mD)

III Generic"Submodel Execution Loop"

- \blacktriangleright f_{init} is for initialization
- \triangleright S is for one iteration of the Solver
- \triangleright B is to specify the Boundaries
- \triangleright O_i is for Intermediate **Observation**
- \triangleright O_f is for Final Observation

IV. Coupling Templates

- \triangleright One has several operators in the submodel execution loop
- \triangleright O_i , O_f as origin
- \triangleright f_{init} , B and S as possible destinations

Example : Coral growth

Coral grows due to nutrient brought by water flow

Coupling Speedup : Coral growth

Classification of problems

- \blacktriangleright relation in the Scale Separation Map
- \triangleright single-Domain (sD) or multi-Domain (mD) relation
- \blacktriangleright coupling templates

Relation between the scales separation and the coupling templates

We consider two submodels, X and Y with single-domain (sD) relation

When the relation between computational domains is **multi-domain**, change $S \rightarrow B$

Thus, the relation in the SSM determines the workflow

Mathematical formulation of couplings

SEL operators can be used to express coupling strategies and estimate errors

- \blacktriangleright Time splitting
- \triangleright Coarse graining
- \blacktriangleright Amplification
-

Time splitting

Assume we have a sD problem with the following SEL

$$
P_{\Delta t} C_{\Delta t} = P_{\Delta t} C_{\Delta t}^{(1)} C_{\Delta t}^{(2)}
$$

Then if $C^{(1)}_{\Lambda t}$ $\mathcal{L}^{(1)}_{\Delta t}$ acts at a longer time scale than $C^{(2)}_{\Delta t}$ we may want to approximate

$$
[P_{\Delta t} C_{\Delta t}]^M \approx P_{M\Delta t} C_{M\Delta t}^{(1)} [C_{\Delta t}^{(2)}]^M
$$

Coarse graining

This strategy consists in expressing a sD problem as

$$
[P_{\Delta x} C_{\Delta x}]^n \approx \Gamma^{-1} [P_{2\Delta x} C_{2\Delta x}]^{n/2} \Gamma
$$

where Γ is a projection operator (implemented in the smart conduit)

Amplification

We consider a process acting at low intensity but for a long time, in a time periodic environment. For instance a growth process in a pulsatile flow.

We have two coupled (mD) processes which are iterated $n >> 1$ times

$$
[P^{(1)}C^{(1)}]^n
$$
 and $[P^{(2)}C^{(2)}(k)]^n$

where k expresses the intensity of process $C^{(2)}.$

If the period of process $C^{(1)}$ is $m << n$, we can approximate the above evolution as

$$
[P^{(1)}C^{(1)}]^m
$$
 and $[P^{(2)}C^{(2)}(k')]^m$

with $k' = (n/m)k$, for a linear process.

Reaction-Diffusion with time splitting

A. Caiazzo, J-L. Falcone, B. Chopard and A. G. Hoekstra, Asymptotic analysis of Complex Automata models for reaction-diffusion systems, Applied Numerical Mathematics 59 pp. 2023–2034 (2009)

CxA Execution Model

- \triangleright Submodels are autonomous processes
- \triangleright Asynchronous communication through the conduits :
	- \triangleright Data is written to the conduit as soon as ready.
	- \triangleright Submodels read the data they need from the conduits (wait if needed).
- \triangleright Only local interactions are necessary : parallelization is possible and natural
- \blacktriangleright Propagation of the termination condition

Send-Receive through the conduits

Example of the Coral submodel :

```
while not EndConditions
     DomainConduit.send(D)
     f := B(f)velocityMap := VelocityConduit.receive()
     f := S(f,velocityMap)
  end
DomainConduit.stop()
myStop()
```
An implementation : the MUSCLE environment (Jan Hegwald, TUB)

- \triangleright Jade (Java Agent based lightweight middleware) as a platform to build the coupling software.
- \triangleright More general than the CxA methodology
- \triangleright Allows us to couple submodels (and legacy codes in C, Fortran).
- \triangleright A "Jade coordinator" is used to setup the system then goes away,
- \triangleright Needs a configuration file (CxA file)

Biomedical application : in-stent restenosis

Restenosis : the full Scale Separation Map

Restenosis : Scale Separation Map

\triangleright A 3-submodel simplification (time separation is achieved)

D Evans, PV Lawford, J Gunn, D Walker, DR Hose, RH Smallwood, B Chopard, M Krafczyk, J Bernsdorf, A Hoekstra. The Application of Multi-Scale Modelling to the Process of Development and Prevention of Stenosis in a Stented Coronary Artery. Phil. Trans. R. Soc. A 366, pp. 3343–3360, 2008

MML : a Multiscale Modeling Language

- \triangleright the SSM turned out to be very powerful to design applications
- \triangleright Formalize the methodology into a language : high level representation of a complex multiscale application
- \triangleright Allows scientists with different backgrounds and geographical locations to better co-develop a multiscale application
- \triangleright Provide blueprints of a complex multiscale application that can be further augmented by other groups
- \blacktriangleright Standard for publication
- \blacktriangleright Automatic execution on a computing resources

MML : a descriptive language

J-L Falcone, B. Chopard and A. Hoekstra, MML : towards a Multiscale Modeling Language,

Procedia Computer Science 1 :11, 819-826, 2010

Main ingredients of MML

- \blacktriangleright Sub-models
- \triangleright Spatial and temporal scales
- \triangleright Computational domain relation
- \blacktriangleright Coupling templates
- \blacktriangleright Smart conduits

Smart conduits

The coupling between submodels is achieved with three computational elements

- \triangleright conduit : one way, point to point
- \triangleright filter : state-full conduit, performing data transformation
- \triangleright mapper : multi-port, data-transformation device.
- \triangleright Smart conduits can be parametrized and stored in a repository to be reused

Filter

1. Transfer information between subsystems:

Data elements are sent with timestamps

Filter

2. Write data to conduit, interpolate and rescale:

Data elements are sent with timestamps

Filter

3. Read from conduit the boundary values:

Data elements are sent with timestamps

Mappers

- \blacktriangleright In principle they are not submodels
- \triangleright Useful to optimize a coupling (do not repeat twice the same calculation, build complex coupling)

We propose two types of mappers : fan-in and fan-out. The output is produced when all inputs are present

gMML

Graphical representation (UML-like)

- \triangleright Submodel are shown as rectangles
- \triangleright Conduits are shown as *lines* with their *extremities* showing the coupling template (operators in the SEL).
- \blacktriangleright Filters are shown as round square across a conduit
- \blacktriangleright Mappers are shown as *hexagons*
- \triangleright Submodel sharing the same computational domain (sD) can be surrounded by a dashed line.

gMML : an example

MAD tool (Cyfronet, PL)

xMML

- \triangleright XML-like language
- \blacktriangleright Full description language
- \triangleright Can be generated from gMML (MAD tool) and vice-versa
- \triangleright From application description to "glue-code" production and scheduling

xMML example

```
<model id="suspensionFlow">
 <description>
    Flow with a suspension of particles. The conentration
    of particles affect locally the flow viscosity and the
    particles are advected by the flow.
 </description>
 <submodel id="flow">
    <spacescale dimension="2" dx="1 mm" lx="10 cm" ly="30 cm" />
    <spacescale dt="1 ms" t="1 min" />
    <ports>
     <in id="concentration" operator="C" dt="1 ms" dx="1 mm" />
     <out id="velocity" operator="Oi" dt="10 ms" dx="1 mm" />
    </ports>
 </submodel>
```
xMML example continued

```
<submodel id="advectionDiffusion">
    <spacescale dimension="2" dx="1 mm" lx="10 cm" ly="30 cm" />
    <spacescale dt="10 ms" t="1 min" />
    <ports>
      <in id="velocity" operator="C" dt="10 ms" dx="1 mm" />
      <out id="concentration" operator="Oi" dt="10 ms" dx="1 mm" />
    </ports>
 \zeta/submodel>
 <coupling from="flow.velocity" to="advectionDiffusion.velocity" />
 <coupling from="advectionDiffusion.concentration" to="flow.concentration">
    <filter kind="timeInterpolation" />
 </coupling>
</model>
```
From MML to execution

coupling consitency, deadlock detection, automatic scheduling (execution graph)

Multiscale APPlications on European e-infRastructures

From applications \rightarrow MML \rightarrow computing infrastructure

- \triangleright Running tightly coupled Distributed Multiscale Applications using several supercomputing platforms
- \triangleright Deploy middleware implementing the CxA-MML-MUSCLE approach on the e-Infrastructure (EGI, PRACE, DEISA)

http ://www.mapper-project.eu

Application portfolio

virtual physiological human

hydrology

nano material science

▶ Participants : UvA NL, UCL UK, UU UK, PSNC PL, CYFRONET PL, LMU DE, UNIGE CH, CHALMERS SE, MPG DE

Simulation of irrigation canals

Develop a simulation tools for the optimal management of irrigation canals

L. Lefèvre, E. Mendes et al. (ESISAR Valence, INP-Grenoble)

Submodels

3D, free surface

Coupling 1D SW models (Mohamed Ben Belgacem)

MAD tool (Cyfronet, PL)

Submodel (kernel) and interface to MUSCLE

```
SW1D can1:= new SW1D(L, dx, dt, width, 0.03d);
for (int j = 0; j < nbriteration; j++) {
    can1.collision();
    can1.propagation();
  //Observation: Collects data to send to the Gate
    info = new HashMap<String, Double>();
    info.put("f1", can1.getf1(nx));
    info.put("h", can1.getH()[nx]);
    f_out.send(info);//send the Data to the Gate
  // Boundary: receive the data from the Gate
    double fin = f in.receive();
    can1.setf2(nx, fin);// update the distribution function
    can1.bounceBack(); // boundary at the left end
      }
```
MUSCLE Coupling script

declare kernels cxa.add_kernel('SW1D1', 'com.unige.irigcan.kernel.d1.SW1D_1B_kernel') cxa.add_kernel('SW1D2', 'com.unige.irigcan.kernel.d1.SW1D_2B_kernel') cxa.add_kernel('SW1D3', 'com.unige.irigcan.kernel.d1.SW1D_1B_kernel') cxa.add_kernel('Gate', 'com.unige.irigcan.junction.Gate_kernel') cxa.add_kernel('Spill', 'com.unige.irigcan.junction.Spill_kernel')

MUSCLE Coupling script (continued)

```
# configure connection scheme
cs = cxa.cs
cs.attach('SW1D1' => 'Gate') { tie('f_out', 'f1_in')}
cs.attach('SW1D2' => 'Gate') { tie('f_out', 'f2_in')}
cs.attach('Gate' => 'SW1D1') { tie('f1_out', 'f_in')}
cs.attach('Gate' => 'SW1D2') { tie('f2_out', 'f_in')}
#
cs.attach('SW1D2' => 'Spill') { tie('f_out_X', 'f1_in')}
cs.attach('SW1D3' => 'Spill') { tie('f_out', 'f2_in')}
#
cs.attach('Spill' => 'SW1D2') { tie('f1 out', 'f in X')}
cs.attach('Spill' => 'SW1D3') { tie('f2_out', 'f_in')}
```
See simulation...

Thank you for your attention