

Distributed Multiscale Computing, the MAPPER project

10.02.2012

Alfons Hoekstra

The Mapper project receives funding from the EC's Seventh Framework Programme (FP7/2007-2013) under grant agreement n RI-261507.

Nature is Multiscale

 Natural processes are multiscale

Scale range for biomedical applications

- Temporal
 - Molecular events O(10⁻⁶) s
 - Human life time O(10⁹) s
 - A range of **10**¹⁵
- Spatial
 - Macro molecules O(10⁻⁹) m
 - Size of human O(10⁰) m
 - A range of 10⁹

Multi-Scale modeling

spatial scale

- Scale Separation Map
- Nature acts on all the scales
- We set the scales
- And then decompose the multiscale system in single scale sub-systems
- And their mutual coupling

From a Multi-Scale System to many Single-Scale Systems

- Identify the relevant scales
- Design specific models which solve each scale
- Couple the subsystems using a coupling method

Why multiscale models?

- There is simply no hope to computationally track complex natural processes at their finest spatio-temporal scales.
 - Even with the ongoing growth in computational power.

Minimal demand for multiscale methods

 $\frac{\cot of \text{ multiscale solver}}{\cot of \text{ fine scale solver}} << 1$

errors in quantities of interest < tol

Multiscale Speedup

spatial scale

 L_m

 ΔL_m

 L_{μ}

 ΔL_{i}

 T_{μ}^{I}

 Δt_m^{I}

 $T_m^{\mathbf{I}}$

temporal scale

- 1 microscale and one macroscale process
 - At each iteration of the macroscale, the microscale is called
- Execution time full fine scale solver $T_{ex}^{full} = \left(\frac{L_{M}}{\Delta x_{\mu}}\right)^{D} \left(\frac{T_{M}}{\Delta t_{\mu}}\right)$
- Execution time for multiscale solver $T_{ex}^{multiscale} = \left(\frac{L_M}{\Delta x_M}\right)^D \left(\frac{T_M}{\Delta t_M}\right) \left(\frac{L_\mu}{\Delta x_\mu}\right)^D \left(\frac{T_\mu}{\Delta t_\mu}\right) \qquad \Delta t_\mu$

Multiscale speedup
$$S^{multiscale} = \frac{T_{ex}^{full}}{T_{ex}^{multiscale}} = \left(\frac{\Delta x_M}{L_{\mu}}\right)^D \left(\frac{\Delta t_M}{T_{\mu}}\right)^D$$

But what about multiscale computing?

- Inherently hybrid models are best serviced by different types of computing environments
- When simulated in three dimensions, they usually require large scale computing capabilities.
- Such large scale hybrid models require a distributed computing ecosystem, where parts of the multiscale model are executed on the most appropriate computing resource.
- Distributed Multiscale Computing

Two Multiscale Computing paradigms

- Loosely Coupled
 - One single scale model provides input to another
 - Single scale models are executed once
 - workflows

- **Tightly Coupled**
 - Single scale models call each other in an iterative loop
 - Single scale models may execute many times
 - Dedicated coupling libraries are needed

Multiscale APPlications on European e-infRastructures

(proposal number 261507)

Project Overview

Motivation: user needs

Application Portfolio

virtual physiological human

fusion

hydrology

nano material science

computational biology

Computational power needed

Table 2: Multiscale characteristics of applications

Application	Loosely	Tightly	Total number of	Number of single scale models
	Coupled	Coupled	single scale models	that require supercomputers
In-stent restenosis		Х	5 ⁽¹⁾	2
Coupled same-		Х	3 ⁽²⁾	2
scale and multi-				
scale				
hemodynamics				
Multi-scale	Х		$2^{(3)}$	1
modelling of the				
BAXS				
Edge Plasma	Х		3 ⁽⁴⁾	1
Stability				
Core Workflow		Х	3-10 ⁽⁵⁾	1-4
Irrigation canals		X	5 ⁽⁶⁾	1-2
Clay polymers	Х		3 ⁽⁷⁾	2

(1) Blood flow, smooth muscle cell proliferation, drug diffusion, thrombus, stent-deployment; Depending on state-of-the-art when starting the project; (2) HemeLB, a lattice-Boltzmann code for blood flow, NEKTAR, a FEM-based code for blood flow in large arteries, CellML models for cellular processes; (3) metabolism (Phase 1), conjugation (Phase 2) and further modification and excretion (transport) (Phase 3) of the target drug/xenobiotic/endobiotic/bile acid; (4) HELENA or equivalent plasma equilibrium code and ILSA or equivalent plasma stability code *i* (5) HELENA/CHEASE/EQUAL, some combination of ETAIGB/ NEOWES/ NCLASS/ GLF23/ WEILAND/ GEM, some heating modules from ICRH/NBI/ECRH/LH, some particle source modules from NEUTRALS/PELLETS, some MHD modules from SAWTEETH/NTM/ELMs (6) 1D shallow water models, 2D shallow water models, 2D Free surface flow models, 3D Free surface flow models, Sediment transport models; (7) ab initio molecular dynamics code CASTEP, atomistic molecular dynamics code LAMMPS, coarse-grained simulations also using LAMMPS;

Overview

MAPPER Applications

Fusion, Physiology, Systems Biology

Nano Material Science, Engineering

MAPPER environment

Access and composition tools

Coupling, programming and execution environment

Interoperability layer

e-Infrastructure

EGEE/EGI, DEISA/PRACE

Ambition

 Develop computational strategies, software and services

for distributed multiscale simulations across disciplines

exploiting existing and evolving European e-infrastructure

- Deploy a computational science infrastructure
- Deliver high quality components aiming at large-scale, heterogeneous,

high performance multi-disciplinary multiscale computing.

Advance state-of-the-art in high performance computing on einfrastructures

enable distributed execution of multiscale models across e-Infrastructures,

MAPPER Roadmap

- October 1, 2010 start of project
- Fast track deployment first year of project
 - Loosely and tightly coupled distributed multiscale simulations can be executed.
- Deep track deployment second and third year
 - More demanding loosely and tightly coupled distributed multiscale simulation can be executed
 - Programming and access tools available
 - Interoperability available

• Have a good school!