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Computation Institute

e Mission: address the most challenging problems arising in the use of strategic
computation and communications

e Joint Argonne/UChicago institute, ~100 Fellows (~50 UChicago faculty) & ~60
staff

e Primary goals:

— Pursue new discoveries using multi-disciplinary collaborations and computational
methods

— Develop new computational methods and paradigms required to tackle these
problems, and create the computational tools required for the effective
application of advanced methods at the largest scales

— Educate the next generation of investigators in the advanced methods and
platforms required for discovery

www.ci.anl.gov
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Multiscale Modeling
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Multiscale

e The world is multiscale

e In modeling, a common challenge is determining
the correct scale to capture a phenomenon of
Interest

— In computer science, a parallel problem is describing
a problem with the right level of abstraction

o Capture the details you care about and ignore those you
don’t

e But multiple phenomena interact, often at
different scales
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Material Science, Methods and Scales

ATOMISTIC MESO-SCALE CONTINUUM
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Sequential (information passing, hand-shaking, bridging)
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R. Devanathan, et al., Energy Env. Sc., 3 (2010) 1406-1426
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Coupling methods

We often know how to solve a part of the problem with sufficient accuracy, but when
we combine multiple parts of the problem at various scales, we need to couple the
solution methods too

Must first determine the models to be run and how they iterate/interact
Coupling options
—  “Manual” coupling (sequential, manual)

o

o

Inputs to a code at one scale are influenced by study of the outputs of a previously run code at another
scale

Coupling timescale: hours to weeks

—  “Loose” coupling (sequential, automated) between codes

o

o

o

Typically performed using workflow tools
Often in different memory spaces
Coupling timescale: minutes

—  “Tight” coupling (concurrent, automated) between codes

o

o

o

o

e.g., ocean-atmosphere-ice-bio

Typically performed using coupling methods (e.g., CCA), maybe in same memory space
Hard to develop, changes in one code may break the system

Coupling timescale: seconds

Boundary between options can be fuzzy

Choice often depends on how frequently the interactions are required, and how much
work the codes do independently
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More on coupling

Modell

Loose

Model2

Modell

Model2
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Coupling Models

Tvold o kold > tnew
Finite Element (fuel element, solve for T) <
T :
. pCPé(;—t=V-(kVT)+Q
Vb T

Phase Field (evolve microstructure) <

!

Finite Element (microstructure, solve for k)
0=V-(k(r,T)VT)
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Swift (for Loose Coupling)




Workflow Example: Protein Structure Prediction %,

== ) == ) T -

—

analyze()

Want to run: 10 proteins x 1000 simulations x
3 MC rounds x 2 temps x 5 deltas = 300K tasks
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Portable workflows — deployable on many
resources

Fundamental script elements are external
processes and data files

Provides natural concurrency at runtime
through automatic data flow analysis and task
scheduling

Data structures and script operations to support
scientific computing
Provenance gathered automatically
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Portability:

dvnamic development and execution

e Separate workflow description from resource and
component implementations

<sites.xml> rawdata = sim(settings);

stats = analysis(rawdata);

‘ \L select resources write script

allocate resources

—>  Execute <
> (SWif‘t)

<tc.data>

define
components

www.ci.anl.gov
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Swift scripts

e C-like syntax, also Python prototype
e Supports file/task model directly in the language

type file;

app (file output) sim(file input) {
namd2 (@input @output

}

e Historically, most tasks have been sequential
applications

www.ci.anl.gov
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Data flow and natural concurrency

e Provide natural concurrency through automatic

data flow analysis and task scheduling

file o0ll = sim(inputl);

file 0l2 = sim(input?2?);

file m = exchange (oll, o012);
file 121 = create(oll, m);
file 021 = sim(121);

inputl
———> sim

create

i21

bueyoxa

inEut2; sim 012

create

i22

sim

—> 021

P

sim

—> 022
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Variables, Tasks, Files, Concurrency

e Variables are single assignment futures
— Unassigned variables are open

e Variables can represent files
— When a file doesn’t exist, the variable is open
— When a file exists, the variable is closed

e All tasks found at runtime

o Tasks with satisfied dependencies (closed variables)
are run on whatever resources are available

e These runs create files/variables that allow more
tasks to run




Execution model

e In astandard Swift workflow, each task must enumerate its input and
output files
e These files are shipped to and from the compute site

v

compute

copy inputs

A

submit site return outputs

o RPC-like technique, can use multiple queuing systems, data services, and
execution environments
e Uses abstractions for file transfer, job execution, etc.

o Allows use of local systems (laptop, desktop), parallel systems (HPC),
distributed systems (HTC, clouds)

e Supports grid authentication mechanisms
e Can use multi-level scheduling (Coasters) — alleviates need for reservations?
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Performance and Usage

e Swift is fast

— Uses Karajan (in Java CoG) as powerful, efficient,
scalable, and flexible execution engine

— Scaling close to 1M tasks; .5M in live science work,
and growing
o Swift usage is growing (~300 users in last year):

— Applications in neuroscience, proteomics, molecular
dynamics, biochemistry, climate, economics,
statistics, astronomy, etc.

— And earthquake modeling (to be discussed in
seasonal school Wed.)
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Powerful parallel prediction loops in Swift

Sweep( )

{
int nSim = 1000;

int maxRounds = 3;
Protein pSet[ ] <ext; exec="Protein.map">;
float startTemp[ ] = [ 100.0, 200.0 |;
floatdelT[]=[1.0, 1.5, 2.0, 5.0, 10.0 |;
foreach p, pnin pSet {
foreach t in startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

}
}

} 10 proteins x 1000 simulations x

3 rounds x 2 temps x 5 deltas
= 300K tasks

}

www.ci.anl.gov
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Data server File
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Swift summary

e Structures and arrays of data

e Typed script variables intermixed with
references to file data

e Natural concurrency

e Integration with schedulers such as PBS, Cobalt,
SGE, GT2, ...

e Advanced scheduling settings

e A variety of useful workflows can be considered




Using Swift for Loose
Coupling




Multiscale Molecular Dynamics

e Problem: many systems are too large to solve
using all-atom molecular dynamics (MD) models

e Potential solution: coarse-grained (CG) models
where each site represents multiple atoms

e In order to do this, have to decide how to
coarsen the model
— How many sites are needed?

— Which atoms are mapped to which sites?

— What is the potential energy as a function of

coordinates of those CG sites?
Credit: Anton Sinitskiy, John Grime, Greg Voth, U. Chicago




Building a CG model — initial data processing

e Stage 0 — run multiple short-duration trajectories of all-
atom MD simulation, e.g., using NAMD, capture dcd files

— Can require large run time and memory, so run on TeraGrid
system

— Download (binary) dcd files to local resources for archiving
— Remove light atoms (e.g., water, H)
— Performed manually

e Stage 1 —-remove non a-Carbon atoms on a subset of the
dcd files from each trajectory

— Need to know how many steps were in each trajectory — not
always what was planned, and final file may be corrupt, so
some manual checking needed

— Performed by fast Tcl script

Credit: Anton Sinitskiy, John Grime, Greg Voth, U. Chicago
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Building CG model — covariance matrix

e Stage 2 —join trajectory files together into ascii file
— Requires trajectory length from previous stage
— Performed by fast Tcl script

e Stage 3 — generate covariance matrix for each
trajectory

— Find deviation of each atom from its average position
across all time steps

— Covariance matrix determines which atoms can be
grouped into rigid bodies (roughly)
— Performed by shell script that runs a compiled C code

o Takes several hours per trajectory
Credit: Anton Sinitskiy, John Grime, Greg Voth, U. Chicago
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Building a CG model — CG mapping

o Stage 4 —for a given number of sites (#sites), find best
mapping for each trajectory

Pick 3 to 5 values for #sites that should cover the likely best value
For each #sites, can find x? value for each mapping
Overall, want lowest x? and corresponding mapping

Uses a group of random initial values and simulated annealing from
each

Performed by shell script to launch compiled C code, O(50k) trials,
takes several days on 100-1000 processors

e Stage 5 — check ¥? values for each trajectory
— X2 vs. #isites on a log-log plot should be linear

Performed by script

If a point is not close to the line, it’s probably not a real minimum
x2 for that #sites

o Go back to Stage 4 — run more initial case to get a lower x?

Credit: Anton Sinitskiy, John Grime, Greg Voth, U. Chicago
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e Stage 6 —determine #sites

Estimate best #sites (b#sites) from slope/intercept of line in stage 5, and
compare results of all trajectories

Performed by script

If results for each trajectory are different, trajectories didn’t sample
enough of the phase space — go back to Stage 0 and run more/longer
trajectories

If b#tsites is outside the range of #sites that have been calculated, add to
initial range and go back to Stage 4

If b#tsite is inside the range, create a smaller range around b#sites and go
back to Stage 4

o b#sites is an integer, so don’t have to do this too much
Outputs final b#sites and corresponding mapping

o Stage 7 — building potential energy as function of site coordinates

Can be done by different methods, e.g., Elastic Network Models (ENM)

o Currently under construction

Credit: Anton Sinitskiy, John Grime, Greg Voth, U. Chicago
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Bio workflow: AA->CG MD

Credit: Anton Sinitskiy, John Grime, Greg Voth, U. Chicago

Stage 0: - Stage 3:
AAMD | | stage 1 stae2: ||| | i
—> and data remove —> Join covar
transfer non-a-C trajects atrix
atoms
<
€
Stage 4: Stage 6:
pick 3-5 Stage 5: find best Sta.ge 7:
5| #sites | check fit Hsites ﬁnd_
and find of x2 and potential
lowest x2 values mapping energy
for each ||
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Multiscale?

e So far, this isn’t really multiscale

e |t has just used fine grain information to build the
best coarse grained model

e Butit’s a needed part of the process

e Overall, can’t run AA_MD as much as desired.

— Here, limited AA_MD simulations -> structural
information for a rough CG model of the internal
molecular structure

— With rough CG model, user can parameterize
interactions for CG "atoms" via targeted all-atom
simulations -> determine average energies and forces
etc. for the CG beads

e Doing this automatically is a long-term goal

Credit: Anton Sinitskiy, John Grime, Greg Voth, U. Chicago
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NSF Center for Chemical Innovation Phase | award: "Center

for Multiscale Theory and Simulation”

e ...development of a novel, powerful, and integrated theoretical and computational capability for
the description of biomolecular processes across multiple and connected scales, starting from the
molecular scale and ending at the cellular scale

e Components:

A theoretical and computer simulation capability to describe biomolecular systems at multiple scales will
be developed, includes atomistic, coarse-grained, and mesoscopic scales ... all scales will be connected in a
multiscale fashion so that key information is passed upward in scale and vice-versa

Latest generation scalable computing and a novel cyberinfrastructure will be implemented

A high profile demonstration projects will be undertaken using the resulting theoretical and modeling
advances which involves the multiscale modeling of the key biomolecular features of the eukaryotic
cellular cytoskeleton (i.e., actin-based networks and associated proteins)

e Core CCl team includes a diverse group of leading researchers at the University of Chicago from the
fields of theoretical/computational chemistry, biophysics, mathematics, and computer science:

Gregory A. Voth (PI, Chemistry, James Franck Institute, Institute for Biophysical Dynamics, Computation
Institute); Benoit Roux (co-Pl, Biochemistry and Molecular Biology, Institute for Biophysical Dynamics); Nina
Singhal Hinrichs (co-PI, Computer Science and Statistics); Aaron Dinner (co-Pl, Chemistry, James Franck
Institute, Institute for Biophysical Dynamics); Karl Freed (co-Pl, Chemistry, James Franck Institute, Institute
for Biophysical Dynamics); Jonathan Weare (co-Pl, Mathematics); Daniel S. Katz (Senior Personnel,
Computation Institute)

www.ci.anl.gov
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Actin at multiple scales

Single Actin monomer (G-Actin)
— all-atom representation

Actin in cytoskeleton — mesoscale
Credit: Greg Voth, U. Chicago representation
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Geophysics Application

e Subsurface flow model

e Couples continuum and pore scale simulations

— Continuum model: exascale Subsurface Transport Over
Multiple Phases (eSTOMP)

o Scale: meter
o Models full domain

— Pore scale model: Smoothed Particle Hydrodynamics (SPH)
o Scale: grains of soil (mm)
o Models subset of domain as needed

e Coupler codes developed

— Pore Generator (PG) — adaptively decides where to run SPH
and generates inputs for each run

— Grid Parameter Generator (GPG) — uses outputs from SPH to
build inputs for next eSTOMP iteration

Credit: Karen Schuchardt, Bruce Palmer, Khushbu Agarwal, Tim Scheibe, PNNL
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Subsurface Hybrid Model Workflow

Job status

l‘l
\

s =
~  Sphi —

Foreach [fixed |
variable] n runs of
[equal | unequal] size)

Credit: Karen Schuchardt, Bruce Palmer, Khushbu Agarwal, Tim Scheibe, PNNL
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Swift code

//Hybrid Model

(file simOutput) HybridModel (file input) {

// Driver
file stompln <"stomp.in">; stompOut = runStomp(input);
iterate iter { (sphins, numsph) = pg(stompOut, sphinprefix);
output = HybridModel(inputs]iter]);
inputs[iter+1] = output; //Find number of pore scale runs
capture_provenance(output); int n = @toint(readData(numsph));
foreachiin [1:@toint(n)] {
} until(iter >= MAX_ITER); sphout[i]= runSph(sphins[i], procs_task)
}

simOutput = gpg(sphOutArr, n, sphout);
}

Credit: Karen Schuchardt, Bruce Palmer, Khushbu Agarwal, Tim Scheibe, PNNL
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Towards Tighter Coupling




More on coupling

Modell

Loose

Model2

Modell

Model2
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More on coupling

e Message vs. file issues:
— Performance: overhead involved in writing to disk vs. keeping in memory
— Semantics: messages vs. Posix
— Fault tolerance: file storage provides an automatic recovery mechanism
— Synchronicity: messages can be sync/async, files must be async

e Practical issues:
— What drives the application?
o Loose case: A driver script calls multiple executables in turns
o Tight case: No driver, just one executable
— What’s the cost of initialization?
o Loose case: Executables initialized each time
o Tight case: All executables exist at all times, only initialized once

— How much can components be overlapped?

o Loose case: If all components need the same number of resources, all resources
can be kept busy all the time

o Tight case: Components can be idle waiting for other components

www.ci.anl.gov
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Work in progress towards tighter coupling in

Swift: Collective Data Management (CDM

o Data transfer mechanism is: transfer input, run, transfer
output

e Fine for single node systems, could be improved to take
advantage of other system features, such as intermediate file
system (or shared global file system on distributed sites)

o Define I/O patterns (gather, scatter, broadcast, etc.) and build
primitives for them

e Improve support for shared filesystems on HPC resources
o Make use of specialized, site-specific data movement features

e« Employ caching through the deployment of distributed
storage resources on the computation sites

o Aggregate small file operations into single larger operations

www.ci.anl.gov
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CDM examples

e Broadcast an input data set to workers

— On Open Science Grid, just send it to the shared file
system of each cluster once, the let worker nodes
copy it from there

— On IBM BG/P, use intermediate storage on I/O nodes
on each pset similarly

e Gather an output data set

— Rather than sending each job’s output, if multiple
jobs are running on a node and sufficient jobs are
already runnable, wait and bundle multiple output
files, then transfer bundle




Work in progress towards tighter coupling after Swift: ExM

(Many-task computing on extreme-scale systems)

o Deploy Swift applications on exascale-generation systems
Distributed task (and function management)
— Break the bottleneck of a single execution engine
— Call functions, not just executables
JETS: Dynamically run multiple MPI tasks on an HPC resource
— Allow dynamic mapping of workers to resources — both ways
— Add resilience — allow mapping of workers to dynamic resources
e MosaStore: intermediate file storage

— Use files for message passing, but stripe them across RAMdisk on
nodes (single distributed filesystem w/ shared namespace),
backing store in shared file system, potentially cache in the middle

« AME: intermediate file storage

— Use files for message passing, but store them in RAMdisk on nodes
where written (multiple filesystems w/ multiple namespaces), copy
to new nodes when needed for reading

www.ci.anl.gov
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Increased coverage of scripting

ExM
Swift
Many executables w/ driver Multi-component executable? Single executable
All files are individual Files can be grouped
Exchange via files Exchange via files in RAM Exchange via messages
State stored on disk ? State stored in memory
Loose coupling Tight coupling

e Questions:
— Will we obtain good-enough performance in ExM?

— How far can we go towards the tightly-coupled regime
without breaking the basic Swift model?

www.ci.anl.gov
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Conclusions

e Multiscale modeling is important now, and use
will grow

e Can think of multiscale modeling instances on a
spectrum of loose to tight coupling

e Swift works for loose coupling

— Examples shown for nuclear energy, biomolecular
modeling, and subsurface flows

e Improvements in Swift (and ExM) will allow it to
be used along more of the spectrum
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