
 MAPPER - 261507 - FP7/2007-2013

Project acronym: MAPPER

Project full title: Multiscale Applications on European e-Infrastructures.

Grant agreement no.: 261507

D4.2 Software Adaptation and Testing

Reports

Due-Date: Month 24
Delivery: Month 24

Lead Partner: UCL
Dissemination Level: Public

Status: Living, second release
Approved: Q Board, Project Steering

Group
Version: 0.7

MAPPER – 261507

DOCUMENT INFO

Date and version number Author Comments
12.03.2012 v0.1 D. Groen, M. Mamonski, K.

Rycerz, E. Ciepiela

First port from wiki pages.

15.03.2012 v0.2 D. Groen, J. Borgdorff, S.

Zasada, C. Bona-Casas

Added ISR3D and AHE

content, fine-tuned the main

document.
17.03.2012 v0.3 D. Groen, C. Bona-Casas Updated ISR3D content.

Modified the writing style.
18.03.2012 v0.4 D. Groen Bolstering the main body +

reformatting the

appendices.
23.03.2012 v0.5 D. Groen Incorporating feedback from

internal reviewers.
6.09.2012 v0.6 D. Groen Updating Living Deliverable
8.10.2012 v0.7 D. Groen Implemented reviewer

feedback.

D4.2 Software adaptation-UCL-v0.7 Page 2 of 72

MAPPER – 261507

D4.2 Software adaptation-UCL-v0.7 Page 3 of 72

MAPPER – 261507

TABLE OF CONTENTS

1 Executive summary .. 6

2 Contributors .. 6

3 Main body of the report ... 7

3.1 Software adaptation report .. 7

3.2 Software testing report .. 16

4 Conclusions ... 24

5 Appendix A: Detailed software adaptation report .. 24

5.1 Application-driven adaptation of QosCosGrid ... 24

5.2 Application-driven adaptation of GridSpace ... 28

5.3 Application-driven adaptation of MUSCLE ... 29

5.4 Application-driven adaptation of AHE .. 30

5.5 Cross-tool integration efforts in QosCosGrid ... 31

5.6 Cross-tool integration efforts in GridSpace .. 32

5.7 Cross-tool integration efforts in MUSCLE .. 38

5.8 Cross-tool integration efforts in AHE ... 38

6 Appendix B: Detailed software testing report .. 39

6.1 ISR3D .. 39

6.2 Nanomaterials ... 41

6.3 QosCosGrid ... 43

6.4 GridSpace ... 49

6.5 MUSCLE ... 55

6.6 Application Hosting Environment ... 60

7 References ... 67

LIST OF FIGURES AND TABLES

Figure 1: Contact information exchange between QCG and MUSCLE....................................7

Figure 2: Screenshot of the QCG reservation portal..9

Figure 3: Overview of a distributed coupled application using MUSCLE and the MTO..........11

Figure 4: GridSpace and AHE integration high level architecture..14

Figure 5: Overview of a single-site execution of a MUSCLE application by GridSpace using

PBS and Drb...15

Figure 6: Palabos performance measurements on Huygens...17

D4.2 Software adaptation-UCL-v0.7 Page 4 of 72

MAPPER – 261507

Figure 7: Performance measurements of the Smooth Muscle Cell simulations (excluding

tissue growth)..18

Figure 8: LAMMPS benchmark results on Huygens (atomistic)...19

Figure 9: LAMMPS benchmark results on Huygens (course-grained)...................................20

Figure 10: Network transfer timing measurements of MUSCLE across a range of networks.25

Figure 11: Mean time taken to complete a range of tasks with each tool..............................27

Figure 12: Comparison of the percentage of users who were satisfied with a tool and the

percentage who could successfully use that tool. ...27

Table 1: The average submit time of a single job. (a) indicates a test performed after the

restart of the machine, caused by malfunctioning of the LUSTRE filesystem. (b) indicates

executions that did not succeed. ..21

Table 2: The average time of a query about a job status. (b) indicates executions that did not

succeed. ...21

Table 3: Summary of statistics collected during usability trials for each tool under

comparison. ..26

D4.2 Software adaptation-UCL-v0.7 Page 5 of 72

MAPPER – 261507

1 Executive summary

In this deliverable, which is part of our effort of adapting existing services (WP4), we report

on our software adaptation work and present a range of tests that we have designed and run.

This deliverable is a living document, which is periodically updated on the MAPPER wiki. The

main document is a summarized and redacted version of the current wiki pages, while we

provide the full Wiki content in Appendix A and B. Up to this point we provide accurate

adaptation and testing reports for the four main software services within MAPPER

(QosCosGrid (QCG), GridSpace, MUSCLE and AHE). Additionally, we present benchmarks

of the two applications (in-stent restenosis and nanomaterials) that we demonstrated during

the first review in Appendix B.

Since the start of MAPPER we have made a wide range of adaptations to integrate the four

main MAPPER services. For example, AHE now supports QCG-based advance reservations

while all of the MAPPER tools can conveniently be composed, launched and deployed from

the GridSpace environment. In the testing reports we describe our approach to testing our

component, provide a range of performance tests, and present usability surveys for the two

tools that are most exposed to the user (AHE and GridSpace). Based on our performance

comparisons, we find that QCG, aside from providing new functionalities, performs

considerably better in many use cases than existing production middleware solutions. The

surveys of AHE and GridSpace confirm that these tools provide measurable added value,

and provide valuable pointers to further improve these tools. Although we provide a few

performance tests of two MAPPER applications in Appendix B, a full performance

assessment of the applications will be provided as part of Task 7.3.

Future versions of this deliverable will likely contain updates of the existing reports, as well

as added reports for major infrastructure components that we are planning to adopt in the

near future.

2 Contributors

The main contributors of this deliverable are UCL, UvA, PSNC and Cyfronet. UCL is in

charge of the deliverable, and have provided the reports on AHE and the nanomaterials

application. The UvA has composed the report on the in-stent restenosis, and they also

worked on the reports on MUSCLE together with PSNC. PSNC in turn has provided the

D4.2 Software adaptation-UCL-v0.7 Page 6 of 72

MAPPER – 261507

reports on the QosCosGrid environment while Cyfronet has provided the reports on

GridSpace.

3 Main body of the report

We present our experiences on software adaptation in section 3.1, and present our software

testing approach and results in section 3.2.

3.1 Software adaptation report

3.1.1 Application-driven adaptation of QosCosGrid

The adaption of the QosCosGrid stack was driven by the acyclically-coupled and cyclically-

coupled pilot MAPPER scenarios, which are comprehensively described in the Deliverable

D5.2. The first scenario implied the adaptation of QosCosGrid stack to the MUSCLE

environment, while the second one requested from the QCG-Broker to implement the

Advance Reservation management interface. All those efforts are described in the next

sections.

3.1.1.1 Adaptation for MUSCLE environment

In most parallel toolkits used within single cluster environments the master process spawns

the worker processes using either SSH or local queuing/batch system native interfaces. This

makes the task of exchanging contact information (e.g. listening host and port) between

master and workers relatively easy as the master process is always initialized before the

slave processes. With a co-allocated application this is an issue as master and workers are

started independently. In the QCG stack we solved this problem by introducing the QCG-

Coordinator service. The service implements two general operations: PutProcessEntry and

GetProcessEntry. The master process provides contact information using the

PutProcessEntry method, while the slave processes acquire this information using the

blocking GetProcessEntry method. This relaxes the requirement that the kernels must be

started in some particular order. The whole process of exchanging contact information is

shown in Figure 1.

D4.2 Software adaptation-UCL-v0.7 Page 7 of 72

MAPPER – 261507

Figure 1: Contact information exchange between QCG and MUSCLE

3.1.1.2 Advance Reservation Interface

Based on the requirements of the Acyclically Coupled Multiscale Application (nanomaterials)

and needs of the other MAPPER tools (GridSpace and Application Hosting Environment) the

QosCosGrid stack was extended with the functionality of reserving computing resources by

the users. This functionality has been added to the global service QCG-Broker, which for this

purpose exploits the capabilities offered currently by the QCG-Computing services - a

domain level component which provides remote access to the resources managed by

queuing systems. The advance reservation of resources has been previously successfully

used in the process of co-allocating MAPPER cyclically coupled parallel applications across

many, heterogeneous, distributed resources. For cyclically coupled applications reservations

are established by the system for the duration of a single job and automatically deleted upon

its completion. For advance reservations created using the newly implemented functionality

reservations are fully controlled by individual users.

Reserved resources can be later used as the containers for jobs submitted by users. QCG-

Broker, in the job submission interface, accepts reservation identifiers in the two forms:

global and local. The second type of identifier may be used when submitting jobs using third-

party services (e.g. UNICORE in case of a cyclically coupled application in MAPPER).

The functionality of creating and managing of advance reservations has been added to the

basic command-line QCG-Broker client (called QCG-Client) that offers users an access to

the functionality provided by the QosCosGrid infrastructure. In addition we have developed a

graphical user interface to further support the MAPPER users. We describe this portal in the

next section.

D4.2 Software adaptation-UCL-v0.7 Page 8 of 72

MAPPER – 261507

3.1.1.3 Reservation Portal

The graphical user interface (GUI) is one solution to help a user to work in a complex

computing environment. We developed a web-based graphical client for managing

reservations via QosCosGrid. We chose a web interface because its intuitive to the user and

has neglishible system requirements (users need only a reasonably up-to-date web

browser). The QCG-Broker client, which has already been integrated with Vine Toolkit

(http://vinetoolkit.org),has been extended in order to give users the ability to request new

advance reservations and listing all already granted reservations. A screenshot of the

Reservation Portal is shown in Figure 2.

Figure 2: Screenshot of the QCG reservation portal

3.1.2 Application-driven adaptation of GridSpace

GridSpace was adapted according to multiscale application requirements gathered from the

start of the project and described in D 4.1, D 8.1 and D7.1. As one of the goals of the

MAPPER project is to propose a common Multiscale Modelling Language for description of

multiscale applications structure, it was decided to base our tools on that language. This

included:

• Developing new tools that support MML. The design of the tools was described in D

8.1 and their first prototype can be found in D 8.2. The tools present in a current

prototype include Mapper Memory (MaMe) that registers submodules of multiscale

applications and the relevant scale information etc. MaMe includes also MML

D4.2 Software adaptation-UCL-v0.7 Page 9 of 72

MAPPER – 261507

repository. The other new tool is Multiscale Application Designer (MAD) for

composing submodules into multiscale applications. The tools were developed from

stratch according to application requirements.

• Adapting GridSpace to be compatible with the new MML-based tools. This includes:

• introducing new, infrastructure independent format of GridSpace executable

experiment that can be produced from MML and additional information stored

in MaMe.

• introducing, designing and developing an interpreter-executor model of

execution in Gridspace:

• Interpreter is a software package available in the infrastructure, e.g.:

Multiscale Coupling Library and Environment (MUSCLE) or Large-

Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

• Executor is a common entity of hosts, clusters, grid brokers, etc.

capable of running software that is already installed (represented as

Interpreters). Examples are Application Hosting Environement (AHE) or

QCG Broker

More information about inspector executor model can be found in Deliverable 8.2.

3.1.3 Application-driven adaptation of MUSCLE

MUSCLE is generally well accepted by teams that use Java for their submodels. However,

MUSCLE did not support the use of MPI in its submodels, which was required for the Fusion,

ISR3D, and canals applications. Technically, this is caused by the incompatibility between

Java threads, which the submodels use, and MPI. Consequently, whenever someone

needed MPI, they had to have the submodel start an external executable that used MPI. We

adapted MUSCLE such that using MPI is now possible without the need to start executables

from the submodels. Technically, when using MPI, submodels are no longer run using

threads, removing the incompatibility. This change does mean that, if MPI is used, only one

submodel may be run in a MUSCLE instance. This change is now being implemented in the

respective applications, as it requires small changes in the application code.

Another limitation of MUSCLE was that it needed direct TCP/IP connections between the

different submodels. Since high-performance machines generally have restrictive firewall

settings which render direct connections impossible. We solved this problem by developing

the user-space MUSCLE Transport Overlay (MTO) daemon. MTO runs on the interactive

nodes of high-performance machines and relays all communication between MUSCLE

submodels. This way, submodels do not communicate directly, but by help of MTO. Using

the MTO is not the default, so MUSCLE still runs the same way it did before on local clusters

D4.2 Software adaptation-UCL-v0.7 Page 10 of 72

MAPPER – 261507

or computers. We present a usage example of the MTO in Figure 3. Applications do not have

to adapt their code to use MTO, they only need to use the command-line flag

--intercluster which enables the use of MTO.

Figure 3: Overview of a distributed coupled application using MUSCLE and the

MTO.

3.1.3.1 More recent adaptations

From the MUSCLE API perspective, there are now separate runtime classes for MML types

such as submodels, mappers, and conduit filters. Writing the classes has been made less

verbose. For instance, the scale does not need to be coded anymore but can be given as a

parameter. Also conduits do not need to be initialized in the code but can be called directly

by their name. Moreover, conduits can now be used in a non-blocking way.

One of the difficulties that application developers had was the lack of compatibility of MPI

with MUSCLE. These compatibility issues lay in the fact that the MUSCLE core is written in

Java. As a result, MUSCLE has an additional C++ interface that communicates with Java

only through TCP/IP. In this way, the C++ executable does not need to be linked with Java

libraries, thereby does not interfere with the low-level MPI mechanisms such as Remote

Direct Memory Access. The same startup script is used so from the command-line only a “--

native” flag needs to be given.

Another issue that application developers had was that some machines might not support

Java (the MUSCLE core) or Ruby (the MUSCLE startup script) at all. In this case it is

possible to run the MUSCLE Java on one machine, and run the C++ code the other machine.

The only requirement is that the two must be able to communicate using TCP/IP.

3.1.3.2 MUSCLE 2.0

The MUSCLE development has been progressing significantly and will have its 2.0 release

beginning of autumn. Its main library features are:

D4.2 Software adaptation-UCL-v0.7 Page 11 of 72

MAPPER – 261507

• A simplified Java API

• A simplified C and C++ API

• No Java or JNI required to write C++ submodels

• Added MML elements as core MUSCLE elements, including

o Submodels

o Fan-in and Fan-out mappers

o Filters

o Source and Sink

• Automatic propagation of failed submodels

The runtime features are also updated:

• Significantly reduced communication overhead

• Added features for inter-cluster communication

• Increase in throughput for inter-cluster communication by integrating MPWide, which

optimises for wide-area connections.

• Compatible with MPI

• No linking between Java and C++ required

• Support for systems which are not able to run Java on their compute (worker) nodes.

Finally, the website (located at http://apps.man.poznan.pl/trac/muscle) and the

documentation have been updated to include all these features.

3.1.4 Application-driven adaptation of AHE

The point of the MAPPER infrastructure is to enable the development, deployment and

routine use of multiscale applications, and in that sense, all modifications made to the AHE

within the scope of the MAPPER project are application driven. However, the modifications

and updates that have been made to the AHE within the MAPPER project are covered in two

sections. Below are described the modifications that have been made specifically to support

application scenarios, and in the next section changes which have been made to facilitate

communication between AHE and other tools within the MAPPER infrastructure.

3.1.4.1 Application Deployment

AHE employs the community model user workflow: expert users configure AHE with their

domain knowledge concerning the grid platform being used, as well as details of the

application to be executed. Once this process is complete, the expert user can share the

AHE web service with the user, allowing them to perform their scientific investigations. As

such, the codes which constitute the acyclically coupled application scenario developed by

MAPPER in the first year were deployed on target computational resources from UCL, PL-

D4.2 Software adaptation-UCL-v0.7 Page 12 of 72

MAPPER – 261507

Grid and PRACE, and then AHE was configured to execute them. This configuration involved

pointing the AHE server used by MAPPER project to submit to the QCG BES services on the

target sites (described in the next section) and updating AHE application registry with details

of the applications to execute.

Rather than execute an application code directly, AHE wrappers were created which

launched the codes in questions and took care of the pre and post processing stages. AHE

client was extended with application parsers specific to each application wrapper, designed

to automate the staging of input and output data. In addition, the AHE client was modified to

allow AHE to stage files that are located on a GridFTP server, as well as data from the user's

local machine.

3.1.4.2 AHE 3.0

In response to the need to create more flexible simulation workflows in AHE, we have been

engaged in reimplementing AHE in Java. AHE 3.0 [8] adds additional features including a

workflow engine, a RESTful web service interface, a Hibernate Object Relational Mapping

framework and additional enhancements to usability and reliability. The RESTful web service

interface of AHE 3.0 allows the AHE server to expose its functionalities via simple operations

on URIs. AHE 3.0 also incorporates a new workflow engine using JBoss’s JBPM workflow

engine. This allows AHE to model persistent user workflows and provides an easier

mechanism to introduce more complex workflows in the future, such as error recovery, or

implement additional functionalities such as SPRUCE urgent computing functionalities into

AHE. Additionally, AHE 3.0 simplifies the user access to cloud resources, and attempts to

bridge the gap between grid and cloud resources, making it possible for users to combine

rely on both within a single application. We expect AHE 3.0 to be deployed for use by

MAPPER in the final year of the project, leading to greater reliability and better performance.

This is a delay compared to the term mentioned in an earlier version of this deliverable, as

we prioritized bolstering the applications that use AHE over the deployment of a new version

of AHE.

3.1.5 Application-driven adaptation of MPWide

The MPWide communication library for distributed computing has largely been introduced in

the second year of the project, and has been adapted both to facilitate coupling of the

Cerebrovascular blood flow application and to allow improved wide area communication

performance within MUSCLE. We have changed the code structure to allow MPWide to be

used as an entirely external library, which is now included in the HemeLB lattice-Boltzmann

application. Additionally, we have developed a Python interface, which allows us to connect

D4.2 Software adaptation-UCL-v0.7 Page 13 of 72

MAPPER – 261507

the PyNS 1D blood flow simulator to MPWide, thereby establishing a channel of

communication between HemeLB and PyNS.

3.1.6 Cross-tool integration efforts in QosCosGrid

The main integration effort within the first year of MAPPER in the context of the QosCosGrid

middleware stack was to enable the support for submitting and monitoring jobs via the

UNICORE Atomic Services (UAS, http://www.unicore.eu). The motivation for this integration

is that the UNICORE services are deployed on all PRACE sites, especially the SARA

Huygens system - a machine used for the demonstration during the first MAPPER Review.

QCG-Broker is a grid meta-scheduler and co-allocation service capable of submitting and

managing of multi-scale jobs based on the advance reservation mechanism. To run a singe

job, QCG-Broker communicates with the services providing access to the local

queuing/batch systems. QCG-Broker was already also able to submit jobs via the QCG-

Computing and Globus (v2.0, v4.0) services.

3.1.6.1 The UNICORE Application Programming Interface

To integrate with the UNICORE stack we exploited the Java interface of the Unicore Atomic

Services (UAS) library (version 1.4.1). The API offers interfaces for communication with all

services being a part of the UNICORE middleware, including: Target System Factory (TSF),

Target Service System (TSS), Storage Management Service (SMS) and Registry Service.

3.1.6.2 Authorization and Authentication

UAS client library exploits "KeyStore" files to store both certificates/private keys and also

Certificate Authority certificates. Because the QCG-Broker system by default stores proxy

certificates delegated by user in the database, the integration with UNICORE implied

implementation of an additional keystore based mechanism. In the provided by QCG-Broker

solution all user certificates are stored in a single KeyStore file protected by randomly

generated passwords.

3.1.6.3 The Job Description

The UNICORE system, similar to the QCG-Computing service, accepts jobs in the

standardized JSDL job description format. The Executable, ApplicationName, Arguments,

Environment elements are set according to the HPC-BasicProfile specification. Other job

artifacts that are not covered by the JSDL standard, such as the identifier for the reservation

or the earliest job start, are transmitted via the native extensions of UNICORE system.

D4.2 Software adaptation-UCL-v0.7 Page 14 of 72

http://www.unicore.eu/

MAPPER – 261507

3.1.6.4 Monitoring of Job Statuses

Because the UNICORE Atomic Services does not support notifications of job status changes

(as opposed to the QCG-Computing service) the PULL mechanism has to be exploited.

Thus, in order to monitor UNICORE jobs we used built-in module of QCG-Broker:

"PollingManager". This module polls periodically (with the predefined time interval) about all

unfinished jobs submitted to the target UNICORE system.

3.1.7 Cross-tool integration efforts in GridSpace

3.1.7.1 Introduction

We have adapted GridSpace to the MAPPER application requirements by introducing the

Inspector-Executor model of execution, according to the following approach:

• We have developed a separate GridSpace Executor for each of the tool that gives

access to available resources (QCG-Broker, AHE, SSH).

• We installed a GS interpreter for each software program used by MAPPER

applications (e.g. MUSCLE or LAMMPS). For example, this allows MUSCLE to be run

using QCG or SSH resources.

3.1.7.2 GridSpace Executor concept

GridSpace facilitates entities called executors for running scripts on remote machines. An

executor is an interface that is used for accessing computational resources such as single

node, job queue, web service etc. Each concrete implementation is programmed in Java so

that it can be easily embedded in GridSpace application. It is also possible to call external

programs when needed. More information on the Executor concept can be found in

Appendix A.

3.1.7.3 Running MUSCLE from GridSpace on QCG resources

GridSpace, along with the Mapper Memory Registry (MaMe) and the Multiscale Application

Designer (MAD), allows the ad-hoc composition of multiscale applications using building

blocks of multiscale modelling language (MML) entities that are registered and made

available for application designers. For example, MML submodules and mappers can be

implemented as MUSCLE kernels. MaMe, MAD and GridSpace are able to generate

MUSCLE applications as a GridSpace experiment. We also created a generic mapping of

GridSpace experiments to corresponding QCG JobProfiles to enable the execution of

MUSCLE applications through QCG.

D4.2 Software adaptation-UCL-v0.7 Page 15 of 72

MAPPER – 261507

3.1.7.4 GridSpace Executor for the Application Hosting Environment (AHE)

This implementation, which is under development, uses a modified AHE Client written in

Java for authentication and job execution. This modified client is easily embeddable in other

Java applications. The architecture of the GridSpace-AHE integration is shown in Figure 4.

The AHE Executor on the GridSpace server communicates with a MyProxy server through

the AHE Client and with a Stage server through the GridFTP client. The runner machine

stages input from and output to the Stage server.

3.1.8 Cross-tool integration efforts in MUSCLE

As MUSCLE is meant as a low-level tool, to implement multiscale models in, no changes to

MUSCLE have been made to enhance cross-tool integration. However, both QCG-Broker

and Gridspace have been adapted for MUSCLE, which is listed in the respective paragraphs.

One adaptation within MUSCLE itself is that the library path and class path are now possible

to set as environment variables. This feature can be useful for remote execution by for

instance GridSpace EW.

3.1.9 Cross-tool integration efforts in AHE

Integration between AHE and other tools in the MAPPER infrastructure happens in two

directions: higher level tools are coupled to AHE to act as clients, and AHE is coupled to

lower level tools, to facilitate submission. These two integration types are classified as

upstream integration and downstream integration respectively, and are discussed in the

sections below.

Figure 4: GridSpace and AHE integration high level

architecture

D4.2 Software adaptation-UCL-v0.7 Page 16 of 72

MAPPER – 261507

3.1.9.1 Upstream Integration

Upstream integration has involved coupling AHE with GridSpace, to allow applications

hosted in AHE to be called as components of a GridSpace managed workflow. Initially, this

was done by preparing shell scripts which automate the launching and monitoring of an AHE

hosted application, by calling AHE client commands to prepare and start the application, and

then polling the application's state until it is completed. These scripts are then treated as

atomic operations by GridSpace, and can be used as the building blocks of workflows.

To coupled AHE more cyclically with GridSpace, we have worked to make it possible to call

the Java AHE client API directly from GridSpace. Due to compatibilities between different

versions of the same library used by AHE and GridSpace, we had to update the AHE client

API to use newer versions of the libraries, which involved some code refactoring. We also

updated AHE client to use the Maven library loading system, in order to be further compatible

with the way GridSpace worked. We also make changes to the way AHE uses proxy

certificates to further enhance compatibility between AHE and GridSpace, and developed

interface classes which allow the AHE to be controlled by GridSpace.

In addition to updates to the client API, we also developed generic wrapper scripts to allow

GridSpace to execute arbitrary applications via AHE. GridSpace needs the ability to execute

arbitrary tasks on HPC resources, for example to pre and post process data and run

simulations. The generic wrappers allow GridSpace to execute any required tasks, via AHE.

3.1.9.2 Downstream Integration

The downstream integration efforts consisted of extending AHE to submit jobs via the OGF

BES interface supported by QCG-Computing, now deployed on the majority of MAPPER

resources. This has entailed creating a new connector to allow AHE to submit jobs to QCG-

Computing, and also modifying the AHE server to enable it to stage files between sites.

Previously, AHE server relied on the resource manager to perform file transfers.

Additionally, AHE has been extended to allow jobs to be submitted to into reservations

created by the QCG Broker. AHE's existing advanced reservation model has been updated,

entailing changes to both the client and server, to allow reservations created using QCG to

pass through to QCG-Computing when jobs are submitted.

3.1.10 Cross-tool integration efforts in MPWide

The main cross-tool integration effort within MPWide is its direct integration within the

MUSCLE Transport Overlay, which in turn is part of the MUSCLE 2.0 releases. Here

MPWide provides automatic optimization of the wide area performance, and allows for a

vastly improved throughput rate compared to the original communication kernel. At time of

D4.2 Software adaptation-UCL-v0.7 Page 17 of 72

MAPPER – 261507

writing, this integration is still in progress, but we expect MUSCLE 2.0 to be ready at the start

of the third year of MAPPER.

3.2 Software testing report

3.2.1 QCG-Computing

We have measured the performance of the administrative layer component of the

QosCosGrid stack: the QCG-Computing service. The benchmarking tests concerned the job

submission and job management operations, which are the primary duties of any Basic

Execution Service [4]. The proposed two types of the benchmarks aim to measure two

important performance metrics: response time and throughput. To measure the performance

benefits of QCG, we compare the performance of the QCG-Computing with a number of

services that are commonly used in production infrastructures, namely gLite CREAM CE

(http://grid.pd.infn.it/cream/) and UNICORE UAS (http://unicore.eu/). All the tests were

performed using a benchmark program, based on the SAGA C++ API [5], which we wrote

specifically for these tests.

3.2.1.1 The Testbed

The testbed consists of two systems connected with the Pionier Wide Area Network

(http://www.pionier.net.pl/online/en), a client machine and the target site.

The client machine has two Intel(R) Xeon(R) CPU E5345 chips (8 cores in total), 11 GB of

memory, and a round-trip time to the cluster's frontend of about 12 ms.

The target site was a the Zeus cluster in Krakow, which is part of the Polish NGI, which has

about 800 nodes, ~3.000-4.000 jobs present in the system, has a scheduler poll interval of

3.5 minutes

For the purpose of the tests a subset of 8 nodes (64 cores) where assigned exclusively for

the 10 user accounts used for a job submission. The benchmarked services were deployed

on separate virtual machines, one of which hosts QCG-Computing and UNICORE on one

virtual core and one of which hosts gLite CREAM on three virtual cores.

3.2.1.2 Benchmark 1 - Response Times

For the first benchmark we developed a program that spawns N processes (each process

can use a different certificate - i.e. act as different user) that invoke the function

sustain_thread. Next, it waits until all the running processes have ended.

Each test is characterized by: maximal number of jobs per user, number of users (concurrent

processes), total number of jobs, test duration and the maximum sleep time between every

D4.2 Software adaptation-UCL-v0.7 Page 18 of 72

MAPPER – 261507

successive query_state call. We conducted four test sets for each of the three tested

middlewares, with each of the four tests having the following parameters:

• 50 jobs x 10 users = 500 jobs, 30 minutes, SLEEP_COEF = 10 seconds,

• 100 jobs x 10 users = 1000 jobs, 30 minutes, SLEEP_COEF = 10 seconds,

• 200 jobs x 10 users = 2000 jobs, 30 minutes, SLEEP_COEF = 10 seconds,

• 400 jobs x 10 users = 4000 jobs, 30 minutes, SLEEP_COEF = 10 seconds.

3.2.1.3 Results

Test QCG 2.0 UNICORE UAS gLite CREAM

50 1.43 2.41 8.47

50x10 1.43 2.41 8.47

100x10 1.49 1.24 a 8.45

200x10 1.99 2.20 8.50

400x10 1.96 - b 8.24
Table 1: The average submit time of a single job. (a) indicates a test performed after the restart

of the machine, caused by malfunctioning of the LUSTRE filesystem. (b) indicates executions

that did not succeed.

Test QCG 2.0 UNICORE gLite

50x10 0.38 2.73 0.20

100x10 0.35 1.61 0.36

200x10 0.63 3.73 0.24

400x10 0.47 - b 0.21
Table 2: The average time of a query about a job status. (b) indicates executions that did not

succeed.

3.2.1.4 Benchmark 2 - Throughput

The test is based on the methodology described in the paper [6]. Similar to the approach

described in the paper we aimed to measure the performance from the user perspective. The

test procedure consisted of two phases:

• submitting sequentially, one after another, N jobs into the target system,

• waiting until all jobs have ended.

The test job was a No OPeration (NOP) task, that finishes immediately after starting. We

measured the time between the submission of the first job and the finish of the last job. We

slightly improved on the test methods used in [6] by submitting the jobs using k

processes/users, by using one client API (SAGA) instead of the command-line clients and

by using a unified production environment.

D4.2 Software adaptation-UCL-v0.7 Page 19 of 72

MAPPER – 261507

The test sets were parametrized by the number of concurrent threads (k), whether all

threads used single client certificate or not, and the total number of jobs (N). We present the

detailed results of our throughput tests in Appendix B.

3.2.2 QCG-Broker performance metrics and tests.

We have measured several performance metrics for the QCG-Broker service, which is

responsible for brokering and scheduling jobs as well as arranging reservations and co-

allocation of resources. These performance metrics include:

1. submission overhead – an average time needed to serve single submission request

measured as time from receiving of submission request to the passing of job to the

queuing system,

2. submission throughput – measured as time needed to serve 100 submission

requests,

3. reservation overhead – an average time needed to make single reservation of

resources – measured as time from receiving of reservation request to creating the

reservation in the queuing system,

4. reservation throughput – measured as time needed to make 100 reservations.

The main aim of comparing the times for a single request and the throughput for 100

requests is to determine the degradation of performance for a stressed system. The number

of requests (100) has been chosen to stress QCG-Broker service enough, but to avoid a

negative impact on underlaying systems especially queuing system managing production

resources of PL-Grid infrastructure.

In spite of the fact that the analysis concern performance of QCG-Broker service, results

include also elements introduced by underlying services such as QCG-Computing (remote

interface to queuing system) as well as the local queuing system. The time of processing of

request by these underlaying services significantly influenced the total one.

All the performance tests and measurements have been done on the production resources of

PL-Grid (Polish NGI) Infrastructure - clusters: reef (PSNC), inula (PSNC), galera plus

(TASK). A QCG-Broker service instance was deployed on elder7.man.poznan.pl machine – a

virtual machine hosted by a physical server equipped with 2 CPUs: Intel Xeon E5345

2.33GHz and 12GB RAM with Citrix XenServer 6.0 virtualization system.

Obtained results:

1) Submission overhead:

D4.2 Software adaptation-UCL-v0.7 Page 20 of 72

MAPPER – 261507

The average time of single submission calculated for 30 requests (with 2 sec break between

calls) was: 557±124 ms (α=0.05). The average time of processing by underlying services

included in the given value was: 234±43 ms (α=0.05). The average time in which the service

responded to the client with the job identifier (processing later the submission request in

background) was: 244±50 ms (α=0.05). The brokering procedure for all requests took no

more then 2 ms.

2) Submission throughput:

The time needed to submit 100 jobs was measured for 12 different numbers of threads

submitting jobs (1..10, 20, 33). The average time was: 47±10 s (α=0.05).

3) Reservation overhead:

The average time of single reservation calculated for 30 requests (with 3 sec break between

calls) was: 1606±633 ms (α=0.05). The average time of processing by underlaying services

(included in that value) was: 1480±616 ms (α=0.05). On average 92% of time needed to

reserve resources QCG-Broker waits for response mainly from the queuing system. The

average time in which the service responded to the client with the reservation identifier

(processing later the submission request in background) was: 132±46 ms (α=0.05).

4) Reservation throughput:

The time needed to create 100 reservation strongly depends on responsiveness of queuing

system (its load and configuration of scheduler). The measurements have been done for two

clusters: reef and galera. To avoid possible problems (race conditions) caused by

overlapping reservation requests QCG-Broker processes reservation calls sequentially in a

single thread.

a) Galera: 100 reservations was created in time: 148±3 s (α=0.05). 99% of that time QCG-

Broker spent waiting for response from QCG-Computing and underlaying queuing system

(the average response time for QCG-Computing (including response time from queuing

system) was: 1464±688 ms (α=0.05).

b) Reef: 100 reservations was created in time: 332±40 s (α=0.05). 99% of that time QCG-

Broker spent waiting for response from QCG-Computing and underlaying queuing system

(the average response time for QCG-Computing (including response time from queuing

system) was: 3319±15536 ms (α=0.05). For the Reef cluster there were huge differences

between times of processing of single reservation call by the queuing system (min=1s,

max=60s) caused by breaks in processing when the system was doing internal scheduling of

jobs.

D4.2 Software adaptation-UCL-v0.7 Page 21 of 72

MAPPER – 261507

3.2.3 GridSpace

3.2.3.1 Tools Usability Tests

During first MAPPER seasonal school, we have performed usability tests of MaMe, MAD and

GridSpace Experiment Workbench tools based on [7] . After making assignments (available

on http://www.mapper-project.eu/web/guest/mad-mame-ew), the school participants were

asked questions about usability of the system they used. The obtained average SUS score

for the tools was 68 points (for 100 possible; standard deviation was 18) . The average was

calculated from answers from 10 participants.

As the tools are still under the development we have also collected specific remarks that may

help to improve their usability. Based on this feedback, we have proceeded to improve the

interface for parameter management of application submodules. We plan to perform similar

tests during the second MAPPER seasonal school planned in month 30.

3.2.3.2 GridSpace Continuous integration and testing

The GridSpace project uses continuous integration for building and testing applications to

ensure that developers are constantly notified about any unexpected bugs in the codebase.

The Continuum (http://continuum.apache.org) integration server builds the whole application

every 4 hours. Each build consists of compiling, running unit and integration tests (see

Appendix B for details) and assembling an application to a .jar or .war package. The

Continuum server also deploys the latest version of the Experiment Workbench tool to a

development web application server, enabling manual tests. The integration tests facilitate

keeping the whole application working and detecting errors caused by changes in

communication interfaces with external systems (e.g., QCG and AHE). These tests, together

with the standard unit tests, ensure that existing functionality is maintained during

development. To present the quality of our tests we use metrics called code coverage that

gives a degree to which code have been tested. We present several code coverage

measurements in Appendix B. We also plan to periodically perform static code analysis

based only on a set of accepted code quality metrics: procedural, object-oriented and

specific to the programming languages (particularly Java).

3.2.3.3 Performance, reliability and conformance tests of Experiment Workbench

(EW)

As the EW is still under development we have yet to perform detailed performance, reliability

and conformance tests. However, we use architecture and design patterns according to

practices that will allow for carrying out such tests during the software evaluation and

optimization phase. We have planned the following performance tests:

D4.2 Software adaptation-UCL-v0.7 Page 22 of 72

MAPPER – 261507

• Execute benchmark experiments in parallel through a single EW instance to examine

its throughput and to estimate the hardware resource usage by a single benchmark.

• Open a number of user sessions to the same instance of Experiment Workbench to

investigate the minimal resources footprint that is generated by a single user session.

In addition to that, we carry out reliability tests by monitoring the instances of EW under a

real and an artificially generated load to help identify undesired long-term effects such as

resource leaks.

3.2.3.4 Mapper Memory Registry (MaMe)

The MaMe is a standalone server, which uses its persistence layer in order to provide

storage and publishing capabilities for a range of MAPPER use cases (module registry,

XMML repository). For more details on its internal structure, please consult e.g., Section

8.2.2.3 in D8.1 deliverable.

MaMe utilizes the model-view-controller methodology for its internal architecture and, as

such, need these three elements tested. We have approached to the problem threefold: by

designing and applying a set of unit testing for model and controller layers, by measuring the

performance of REST publishing element and by testing compatibility of the view layer with

the newest web browsers. We present detailed results on this in Appendix B.

3.2.3.5 Multiscale Application Developer (MAD)

MAD is a web application providing convenient and user-friendly set of tools allowing users

to compose MAPPER applications and export them to executable experiments inside

GridSpace Experiment Engine. MAD relies on external components within the MAPPER

infrastructure which are MaMe - the model registry and Experiment Workbench - the

execution engine. MAD relies on a collection of commonly adopted libraries, which makes

integration stable and require a minimal set of integration tests on the MAD side.

Testing of an interactive user interface is not easily automated. Existing web testing

frameworks (e.g. Selenium) do not support recording of drag-and-drop actions. That is why

the structure of the MAD project follows the MVP principles

(http://code.google.com/webtoolkit/articles/mvp-architecture.html) which let unit-test user

interfaces all the way up to the views. Additionally, the core of the application is abstracted

into a set on controllers and presenters independent of the view engine implementation

(currently GWT with supporting libraries).

D4.2 Software adaptation-UCL-v0.7 Page 23 of 72

MAPPER – 261507

3.2.4 MUSCLE

The networking code had one change, where it replaced the XDR protocol with the

MessagePack protocol for serialization (http://www.msgpack.org). This makes

communication between different MUSCLE instances much faster. On single instances,

shared memory communication is now performed instead of TCP/IP communication. Finally,

C++ to Java still uses the XDR protocol.

From these tests and the previous benchmarks, single instance communication latency

shows a 20-fold decrease and throughput a 8-fold improvement. Two-instance

communication latency has decreased 4-fold, while throughput has improved 10-fold. When

using native code there is only a 30% increase in latency but a 12-fold decrease in

throughput due to using the XDR protocol for Java-C++ communication.

The MTO software has not been significantly updated and has not been benchmarked again.

It will have updated results once the integration with MPWide is fully tested

3.2.4.1 Summary of older tests

We have performed MUSCLE tests in three different environments, locally on one machine,

across a local network, and across a wide area network. MUSCLE has been tested locally on

a single iMac with an Intel i3 3.2 GHz processor running Mac OS X 10.7.3 to measure

communication library overheads. For the local network test we connected it to a dual core

Intel 2160 1.8 GHz processor running Ubuntu Server on the same network, while for the wide

area test we use MTO between Reef (a PL-Grid resource in Poznan, Poland with 16 Intel

Xeon E5530 cores per node) and Huygens (a PRACE machine in Amsterdam, The

Netherlands; with 64 IBM Power6 cores per node).

The following measurements have been performed by sending messages of different sides

from one submodel to another and back, with details in the paragraphs and tables below.

Note that the average time is in fact the round-trip time (RTT), of one message being sent to

the other submodel and that message returned to the first. We approximate the time for

sending a single message by dividing the time for the double communication by two.

MUSCLE runs within a single instance have very high communication speeds and low

latency, and the runs between two local instances also show acceptable performance, with

less than 2 ms RTT and ~100 MB/s throughput. On a local network we measure a slightly

higher RTT of 4 ms with ~30 MB/s throughput. Over a link between Reef and Huygens we

measure a RTT of 115 ms, which is roughly three times the ping time, and a throughput

D4.2 Software adaptation-UCL-v0.7 Page 24 of 72

MAPPER – 261507

between 7 and 13 MB/sec. The limited wide area performance require further investigation,

and may be caused by the connection configuration rather than the MUSCLE communication

software.

Overall, MUSCLE does not seem to introduce much overhead. Largest factors are whether it

is using sockets or within-process communication, and the high latency effect between

distant supercomputers. We present the detailed results of our performance measurements

in Appendix B.

Figure 5: Network transfer timing measurements of MUSCLE across a

range of networks

3.2.5 Application Hosting Environment

AHE is designed to simplify user experience, and as such benchmarking of the tool has

involved conducting usability studies to compare AHE to other similar tools.

3.2.5.1 Usability Study Methodology

Here we provide a brief overview of the usability study we have performed for AHE. Further

details can be found in Appendix B. We compare the AHE with both Globus and UNICORE

in a variety of studies, which both are commonly used in production systems. We do this

comparison to assess to what extent AHE provides added value and improved usability over

the existing software in production infrastructures. Our usability study was split into two

sections. In the first section participants were asked to compare Globus, UNICORE and AHE

by performing three separate tasks:

D4.2 Software adaptation-UCL-v0.7 Page 25 of 72

MAPPER – 261507

• Launch an application on a grid resource using the middleware tool being tested. The

application in question (pre-installed on the grid resource) sorted a list of words into

alphabetical order. The user had to upload the input data from their local machine and

then submit the application to the machine.

• Monitor the application launched in step 1 until complete.

• Download the output of the application back to the local machine once it has

completed.

The second section compared the use of X.509 certificates to ACD (Audited Credential

Delegation) authentication. In this section, users were asked to perform the following two

tasks:

• Configure the AHE client with to use an X.509 certificate, and then submit a job using

the graphical client.

• Authenticate to AHE using an ACD username and password, and then submit a job

using the graphical client.

All of the tests ran the application on the same server, based locally in the Centre for

Computational Science at University College London, which was used solely for the usability

test. We invited 39 non-expert participants to the perform the usability study. Due to

problems with the delivery platform, the results from six participants have been excluded,

meaning that the results presented have been gathered from 33 participants.

3.2.5.2 Results

Result
Globus

Toolkit

AHE

CLI

UNICORE

GUI

AHE

GUI

AHE with

Cert

AHE with

ACD

Percentage of successful

users
45.45 75.76 30.30 96.97 66.67 96.97

Percentage of users

satisfied with tool
27.27 53.54 47.47 79.80 51.52 87.88

Percentage of users who

found tool difficult to use
45.45 25.25 26.26 5.05 27.27 0.00

Table 3: Summary of statistics collected during usability trials for each tool under comparison.

Our usability tests show very clear differences between the different tools tested, based on

the usability metrics defined above. Table 3 presents several key measurements from our

findings. The mean times taken to complete the range of tasks with each tool are given in

Figure 8. Participants able to use AHE to run their applications faster than via Globus or

UNICORE, and AHE with ACD faster than AHE with X.509 certificates. We also measured

D4.2 Software adaptation-UCL-v0.7 Page 26 of 72

MAPPER – 261507

user satisfaction with the tools used. In table 3 we have summarized the percentage of

participants who reported being either Satisfied or Very Satisfied with a tool.

3.2.5.3 Discussion of Results

The results presented in the previous section clearly confirm our hypotheses, that the

application interaction model used by the AHE is more usable than the resource interaction

model implemented in the UNICORE and Globus toolkits, with AHE found to be more usable

for each of our defined usability metrics. We believe the reason for this is due to the fact that

AHE hides much of the complexity of launching applications from users, meaning that (a)

there are less things that can go wrong (hence the lower failure rate) and (b) there are less

things for a user to remember when launching an application (hence the higher satisfaction

with and lower perceived difficulty of AHE tools).

Figure 6: Mean time taken to complete a range

of tasks with each tool.

3.2.6 MPWide

MPWide is currently tested as part of the HemeLB application. These tests include both unit

tests, and regular functional tests. MPWide will also become part of the MUSCLE code base.

We have performed a few preliminary performance tests over regular Internet using

exchanges of a total size of 64MB per test, repeating each test for at least 20 times. Here we

compare transfers done using MPWide with transfers that are done using the ssh-based

secure copy (scp), using the 0mq communication library (http://www.zeromq.org), and using

the existing communication mechanisms in MUSCLE. We summarise the results of our tests

below:

D4.2 Software adaptation-UCL-v0.7 Page 27 of 72

Figure 7: Comparison of the percentage of

users who were satisfied with a tool and the

percentage who could successfully use

that tool.

http://www.zeromq.org/

MAPPER – 261507

Mavrino (UCL cluster, London) – Reef (PL-Grid site, Poznan):

scp: 10.7 / 16.0 MB/s (each direction respectively).

MPWide: 70 MB/s (Settings were 96 streams, 10MB/s pacing per stream, 64kB buffer size).

0mq: 30 / 110 MB/s (each direction respectively).

Reef (PL-Grid EGI site, Poznan) – Galera (PL-Grid EGI site, Gdansk):

scp: 12.8 / 21.3 MB/s (each direction respectively).

MPWide: 115 MB/s (Settings were 128 streams, 10MB/s pacing per stream, 256kB buffer

size).

0mq: 64 / - MB/s (worked in one direction only).

Reef (PL-Grid EGI site, Poznan) – Huygens (PRACE Tier-1 site, Amsterdam):

scp: 32 / 9.1 MB/s (each direction respectively).

MUSCLE (older version): 18 MB/s.

MPWide: 55MB/s (Settings were 256 streams, 10 MB/s pacing per stream, 100kB buffer

size).

4 Conclusions

In this deliverable we have reported on our adaptation and testing experiences of the

MAPPER software. We presented a detailed account of the application-driven adaptations of

QCG middleware, GridSpace, MUSCLE and AHE, and described our cross-tool integration

efforts in a separate section. The QosCosGrid advance reservation feature can now be used

from both AHE and GridSpace, while GridSpace has been modified to more conveniently

support cyclically- and acyclically coupled multiscale models. Additionally, GridSpace now

also works together with MUSCLE and AHE. A main priority in the adaptation of MUSCLE

was the development of the MUSCLE Transport Overlay, which enables MUSCLE to flexibly

and reliably connect submodels deployed at different locations. The AHE now supports QCG

middleware, and has been adapted to allow a tighter and more robust integration with

GridSpace.

We have shown that the two main MAPPER applications presented during the review

maintain a good efficiency when scaled to up to 1024 cores on the Huygens supercomputer.

Additionally, we find that the scaling improves for larger problem sizes. Additionally, we

presented a wide range of performance and usability tests of the main MAPPER

components. Among other things we have shown that the QCG middleware is more

responsive than its direct competitors, and that the AHE with Audited Credential Delegation

is the easiest way for non-expert users to run their applications on remote resources.

D4.2 Software adaptation-UCL-v0.7 Page 28 of 72

MAPPER – 261507

MUSCLE delivers reliable and solid performance on local sites, and reasonable performance

across sites. We conclude that some of the performance limitations of MUSCLE across sites

may be caused by the configuration of the underlying network and are working to resolve

this. GridSpace, which is integrated with a large number of other components, features a

wide range of integration, unit and code coverage tests to ensure its proper functioning when

changes are made to the codebase.

In future versions of this living deliverable we aim to include updated and enhanced reports

for the current components, as well as adaptation and testing reports for MAPPER services

that we are planning to adopt.

5 Appendix A: Detailed software adaptation report

5.1 Application-driven adaptation of QosCosGrid

The adaption of the QosCosGrid stack was driven by the two pilot MAPPER scenarios:

• Cyclically Coupled Application Scenario,

• Acyclically Coupled Application Scenario

comprehensively described in the Deliverable D5.2. The first scenario implied the adaptation

of QosCosGrid stack to the MUSCLE environment, while the second one requested from the

QCG-Broker to implement the Advance Reservation management interface. All those efforts

are described in the next sections.

5.1.1 Adaptation for MUSCLE environment

In most parallel toolkits used within single cluster environments the master process spawns

the worker processes either using SSH or LRMS native interfaces. This make the task of

exchanging contact information (e.g. listening host and port) between master and workers

relatively easy as the master process is always initialized before the slave processes. With a

co-allocated parallel application this is an issue as master and workers are started

independently. In the QosCosGrid stack we solved this problem with a help of external entity:

the QCG-Coordinator service. The service implements two general operations:

PutProcessEntry and GetProcessEntry. The master process provides contact information

using the PutProcessEntry method, while the slave processes acquire this information using

the GetProcessEntry method which blocks until the information is available. This relaxes the

requirement that the kernels must be started in some particular order.

D4.2 Software adaptation-UCL-v0.7 Page 29 of 72

MAPPER – 261507

• PutProcessEntry(in: key, in: data) - puts contact information data for a given session

key,

• GetProcessEntry(in: key, out: data) - gets contact information data for a given session

key.

The GetProcessEntry operation is blocking, i.e. it waits until the process data for a given key

is available. This relaxes the requirement that the kernels must be started in some particular

order. The unique session key is generated by QCG-Broker and distributed to all MUSCLE

kernels. The whole process of exchanging contact information is shown in the below figure.

5.1.2 Advance Reservation Interface

Based on the requirements of the Cyclically Coupled Multiscale Application (nanomaterials)

and needs of the other MAPPER tools (GridSpace and Application Hosting Environment) the

QosCosGrid stack was extended with the functionality of reserving computing resources by

the users. This functionality has been added to the global service QCG-Broker, which for this

purpose exploits the capabilities offered currently by the QCG-Computing services - an

domain level components which provide remote access to the resources managed by

queuing systems. The Advance Reservation of resources has been previously successfully

used in the process of co-allocating MAPPER cyclically coupled parallel applications into

many, heterogeneous, distributed resources. The essential features that differs both cases is

that for "Cyclically Coupled" applications reservations are established by the system for the

duration of a single job and automatically deleted upon its completion. For advance

reservation created using the newly implemented functionality reservations are fully

controlled by individuall users. Users while reserving computing resources have the

possibility to express their preferences providing:

• machine names to be taken into account when filtering applicable systems,

• characteristics and the amount of resources they want to reserve,

D4.2 Software adaptation-UCL-v0.7 Page 30 of 72

MAPPER – 261507

• duration of the reservation and the time window within which the reservation should

be granted.

If the user was authorized for reserving resources, that means it had provided a valid

definition of resource requirements and there had been free resources, the system creates a

reservation and returns a globally unique identifier that uniquely identifies the reservation.

For every reservation one can cancel it or query it status, which is composed of the following

information:

• the description of resource requirements,

• the time when the reservation request was sent,

• the time window of the reservation,

• the reservation state and diagnostic message in case of errors.

Moreover the system returns the list of allocations (reservation on single site) created by the

system with information about:

• the name of the cluster where resources have been reserved,

• the total number of reserved slots (cores),

• the local reservation identifier generated by the local batch system,

• the list of reserved worker nodes.

Reserved resources can be later used as the containers for jobs submitted by users. QCG-

Broker, in the job submission interface, accepts reservation identifiers in the two forms:

global and local. The second type of identifier may be used when submitting jobs using third-

party services (e.g. UNICORE in case of a cyclically coupled application scenario).

The functionality of creating and managing of advance reservations has been added to the

basic command-line QCG-Broker client (called QCG-Client) that offers users an access to

the any functionality provided by the QosCosGrid infrastructure. In addition, for the

convenience of the MAPPER project's users, a graphical user interface, described in the next

section, was developed.

5.1.3 Reservation Portal

The use of graphical user interface (GUI) is one solution to help an user to work in a complex

computing environment. In order to facilitate use of the functionality offered by the

QosCosGrid services: the advance reservation of resources, we developed a Web-based

graphical client for managing reservations via QosCosGrid. The Web interface was chosen

for its easiness for user and almost no system requirements (the only user's requirement is a

regular Web Browser). The already integrated with Vine Toolkit (http://vinetoolkit.org) the

D4.2 Software adaptation-UCL-v0.7 Page 31 of 72

MAPPER – 261507

QCG-Broker client has been extended in order to give an user the possibilities of requesting

a new advance reservation and listing all already granted reservations. From the Web

application it is also possible to cancel the reservation previously created. The portal was

implemented in the Adobe Flash (Flex) technology, thus minimizing the risk of malformed

application layout related to the lack of full compliance of current web browsers with the

standards. The reservation portlet was embedded into the portal that supports

nanotechnology scientific computing http://nano.man.poznan.pl. The screenshot of the

Reservation Portal is presented in the below figure.

5.2 Application-driven adaptation of GridSpace

GridSpace was adapted according to multiscale application requirements gathered from the

very beginning of the project and described in D 4.1, D 8.1 and D7.1. As one of the goals of

the MAPPER project is to propose a common Multiscale Modelling Language for description

of multiscale applications structure, it was decided to base our tools on that language. This

included:

• developing new tools that support MML. The design of the tools was described in D

8.1 and their first prototype can be found in D 8.2. The tools present in a current

prototype include Mapper Memory (MaMe) that registers submodules of multiscale

D4.2 Software adaptation-UCL-v0.7 Page 32 of 72

http://nano.man.poznan.pl./

MAPPER – 261507

applications and the relevant scale information etc. MaMe includes also MML

repository. The other new tool is Multiscale Application Designer (MAD) for

composing submodules into multiscale applications. The tools were developed from

stratch according to application requirements.

• adapting GridSpace to be compatible with the new MML-based tools. This included:

• introducing new, infrastructure independent format of GridSpace executable

experiment that can be produced from MML and additional information stored

in MaMe.

• introducing, designing and development of interpreter-executor model of

execution in Gridspace:

• Interpreter is a software package available in the infrastructure, e.g.:

Multiscale Coupling Library and Environment (MUSCLE) or Large-

Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

• Executor is a common entity of hosts, clusters, grid brokers, etc.

capable of running software that is already installed (represented as

Interpreters). Examples are Application Hosting Environement (AHE) or

QCG Broker

More information about inspector executor model can be found in D 8.2. Next section

describes how we have used inspector-executor model in cross-tool integration.

5.3 Application-driven adaptation of MUSCLE

By teams that use Java for their submodels, MUSCLE was generally well accepted.

However, MUSCLE did not support the use of MPI in its submodels, which was required from

at least the Fusion, ISR3D, and canals applications. Technically, this is caused by the

incompatibility between Java threads, which the submodels use, and MPI. Consequently,

whenever someone needed MPI, they had to have the submodel start an external executable

that used MPI. By adapting MUSCLE, using MPI is now possible within MUSCLE, without the

need to start executables from submodels. Technically, when using MPI, submodels are not

run in a Thread anymore, removing the incompatibility. This change does mean that only one

submodel may be run in a MUSCLE instance, if it wants to use MPI. This change is now

being implemented in the respective applications, as it requires small changes in their code.

Another limitation of MUSCLE, discovered by trying to do distributed multiscale computing on

high-performance machines, was that it needed direct TCP/IP communication between the

different submodels. Since high-performance machines generally have restrictive firewall

settings, this was not possible in this setting. The problem was solved by implementing the

user-space MUSCLE transport overlay daemon (MTO). MTO runs on the interactive nodes of

D4.2 Software adaptation-UCL-v0.7 Page 33 of 72

MAPPER – 261507

high-performance machines and relays all communication between MUSCLE submodels.

This way, submodels do not communicate directly, but by help of MTO. Using the MTO is not

the default, so MUSCLE still runs the same way it did before on local clusters or computers.

The use of MTO is graphically displayed in the following figure.

Applications do not have to adapt their code to use MTO, they only need to use the

command-line flag --intercluster which enables the use of MTO.

5.4 Application-driven adaptation of AHE

The point of the MAPPER infrastructure is to enable the development, deployment and

routine use of multiscale applications, and in that sense, all modifications made to the AHE

within the scope of the MAPPER project are application driven. However, the modifications

and updates that have been made to the AHE within the MAPPER project are covered in two

sections. Below are described the modifications that have been made specifically to support

application scenarios, and in the next section changes which have been made to facilitate

communication between AHE and other tools within the MAPPER infrastructure.

5.4.1 Application Deployment

AHE employs the community model user workflow: expert users configure AHE with their

domain knowledge concerning the grid platform being used, as well as details of the

application to be executed. Once this process is complete, the expert user can share the

AHE web service with the user, allowing them to perform their scientific investigations. As

such, the codes which constitute the acyclically coupled application scenario developed by

MAPPER in the first year were deployed on target computational resources from UCL, PL-

Grid and PRACE, and then AHE was configured to execute them. This configuration involved

pointing the AHE server used by MAPPER project to submit to the QCG BES services on the

D4.2 Software adaptation-UCL-v0.7 Page 34 of 72

MAPPER – 261507

target sites (described in the next section) and updating AHE application registry with details

of the applications to execute.

Rather than execute an application code directly, AHE wrappers were created which

launched the codes in questions and took care of the pre and post processing stages. AHE

client was extended with application parsers specific to each application wrapper, designed

to automate the staging of input and output data. In addition, AHE client was modified to

allow AHE to stage files that are located on a GridFTP server, as well as data from the user's

local machine.

5.4.2 AHE 3.0

In response to the need to create more flexible simulation workflows in AHE, we have been

engaged in reimplementing AHE in Java. AHE 3.0 adds additional features including a

workflow engine, a RESTful web service interface, a Hibernate Object Relational Mapping

framework and additional enhancements to usability and reliability. The RESTful web service

interface of AHE 3.0 allows the AHE server to expose its functionalities via simple operations

on URIs. AHE 3.0 also incorporates a new workflow engine using JBoss’s JBPM workflow

engine. This allows AHE to model persistent user workflows and provides an easier

mechanism to introduce more complex workflows in the future, such as error recovery, or

implement additional functionalities such as SPRUCE urgent computing functionalities into

AHE. With the re-implementation complete, we expect AHE3.0 to be deployed for use by

MAPPER in the second year of the project, leading to greater reliability and better

performance.

5.5 Cross-tool integration efforts in QosCosGrid

The main integration effort within the first year of MAPPER project in the context of the

QosCosGrid middleware stack was to enable the support for submitting and monitoring jobs

via the UNICORE Atomic Services (UAS)[footnote:[http://unicore.eu/].] The

motivation for this integration was the fact that the UNICORE services are deployed on all

PRACE sites, especially the SARA Huygens system - a machine used for the demonstration

during the first MAPPER Review.

QCG-Broker is a grid meta-scheduler and co-allocation service capable of submitting and

managing of multi-scale jobs basing on the advance reservation mechanism. In order to run

a singe job, QCG-Broker communicates with the services providing an access to the Local

Resource Management Systems (so called batch systems). Before the MAPPER project

QCG-Broker was capable of submitting jobs via the QCG-Computing and Globus (v2.0, v4.0)

services.

D4.2 Software adaptation-UCL-v0.7 Page 35 of 72

MAPPER – 261507

5.5.1 The UNICORE Application Programming Interface

To integrate with the UNICORE stack we exploited the Java interface of the Unicore Atomic

Services (UAS) library (version 1.4.1). The API offers interfaces for communication with all

services being a part of the UNICORE middleware, including: Target System Factory (TSF),

Target Service System (TSS), Storage Management Service (SMS) and Registry Service.

5.5.2 Authorization and Authentication

UAS client library exploits "KeyStore" files to store both certificates/private keys and also

Certificate Authority certificates. Because the QCG-Broker system by default stores proxy

certificates delegated by user in the database, the integration with UNICORE implied

implementation of an additional keystore based mechanism. In the provided by QCG-Broker

solution all user certificates are stored in a single KeyStore file protected by randomly

generated passwords.

5.5.3 The Job Description

The UNICORE system, similar to the QCG-Computing service, accepts jobs in the

standardized JSDL job description format. The Executable, ApplicationName, Arguments,

Environment elements are set according to the HPC-BasicProfile specification. Other job

artifacts, that are not covered by the JSDL standard, such as the identifier for the reservation

or the earliest job start, are transmitted via the native extensions of UNICORE system.

5.5.4 Monitoring of Job Statuses

Because the UNICORE Atomic Services does not support notifications of job status changes

(as opposed to the QCG-Computing service) the PULL mechanism has to be exploited.

Thus, in order to monitor UNICORE jobs we used built-in module of QCG-Broker:

"PollingManager". This module polls periodically (with the predefined time interval) about all

unfinished jobs submitted to the target UNICORE system.

5.6 Cross-tool integration efforts in GridSpace

5.6.1 Introduction

As described in a previous section, we have adapted GridSpace to MAPPER application

requirements by introducing Inspector - Executor model of execution. The integration of

GridSpace with other MAPPER tools we have used following approach.

D4.2 Software adaptation-UCL-v0.7 Page 36 of 72

MAPPER – 261507

• For each of the tool that give access to available resources (QCG, AHE, SSH) we

have developed separated GridSpace Executor

• Each software used by MAPPER applications (e.g. MUSCLE or LAMMPS) was

installed as one of GridSpace interpreters. In particular, MUSCLE can currently be run

using QCG or SSH resources.

GridSpace Executor concept

GridSpace facilitates entities called executors for running scripts on remote machines. An

executor is an interface that is used for accessing computational resources such as single

node, job queue, web service etc. Each concrete implementation is programmed in Java so

that it can be easily embedded in GridSpace application. It is also possible to call external

programs when needed.

Every executor provides at least following operations:

• login - starts session with computational resource using credentials passed by

GridSpace user. Currently the credential may be a pair of login and password or a

proxy certificate recognized by remote resource

• execute - executes passed command with given arguments and script code. It also

handles staging in input files and staging out results.

• logout - closes session with computational resource and terminates all connections

opened by login operation

Each executor is associated with a single File Manager. This file manager is an interface for

handling files and directories on remote computational resource. It provides operations for

copying, reading, creating and deleting entries using concrete protocols (such as SCP,

GridFTP, WebDAV). It is also used for staging in and out. Usually a file manager is created

when an exector establishes a session with remote resource (login operation).

Executor and FileManager interface

D4.2 Software adaptation-UCL-v0.7 Page 37 of 72

MAPPER – 261507

The executor abstraction enables GridSpace to communicate with various types of

computational resources with different kinds of protocols. An example is SSH-based

implementation that uses SSH protocol for authentication and executing scripts. It can be

used to access single sites or nodes. In this case the login operation establishes a SSH

session with chosen machine and executing causes a remote command to be invoked using

this connection. It also facilitates SCP protocol client for managing resources on remote

machine.

5.6.2 GridSpace Executor for QCG

GridSpace communicates with QCG resources using dedicated Executor implementation. It

handles standard executor operations as follows:

• login establishes GridFTP session with designated GridFTP server using GSI

authentication. Credential is proxy certificate passed by user through GridSpace web

interface. The GridFTP session is used by a GridFTP file manager associated with

this executor

• execute operation submits a job profile generated by GridSpace. This profile contains

the command, script code and location of input and output files passed as arguments

to this operation.

• logout closes established GridFTP session

As mentioned before this executor uses GridFTP for managing files and directories on

remote resource. All input files are staged in using this protocol before job is submitted and

are staged out right after the job finishes.

5.6.2.1 Running MUSCLE from GridSpace on QCG resources

Mapper tools, namely GridSpace along with Mapper Memory Registry (MaMe) and

Multiscale Application Designer (MAD), address Mapper concept to allow for ad-hoc

composition of multiscale applications from building blocks of MML entities that are to be

registered and made available for application designers. In particular, MML submodules and

mappers can be implemented as MUSCLE kernels. MaMe, MAD and GridSpace have to

collaborate with each other in order to be able to generate an arbitrary MUSCLE application

in a form of GridSpace experiment. Generic mapping of an arbitrary GridSpace experiments

to corresponding QCG JobProfiles has also to be ensured in order to enable execution of all

existing and potential future MUSCLE applications through QCG.

The problem is to ensure that all jar files being referred to in cxa generated by MAD (lines:

m.add_classpath “...”, and m.add_libpath “...”) are present on the site where MUSCLE kernel

is to be executed. MUSCLE kernels (respective to MML submodels or mappers) depend on

D4.2 Software adaptation-UCL-v0.7 Page 38 of 72

MAPPER – 261507

several bundles that need to be in place on target site in the location specified in cxa. In

order to ensure it, collaboration between MaMe, MAD, EW, QCGBroker and QCGComputing

is indispensable.

In MaMe each MUSCLE kernel has assigned bundle names which is a colon-separated list

of bundle names, and individual bundle name is qualified using slashes. MAD generates cxa

code basing on the information from MAD. Cxa, then, contains the lines as follows:

m.add_classpath

“#{ENV'MUSCLE_KERNEL_REPO'}/mykernel/my.jar:#{ENV'MUSCLE_KERNEL_REPO'}/my

kernel/another.jar:#{ENV'MUSCLE_KERNEL_REPO'}/mykernel/classesdir/”

m.add_libpath ”#{ENV'MUSCLE_KERNEL_REPO'}/mykernel/my.so”

Moreover, kernel instance definition in cxa follows the syntax

“<kernel_name>_<unique_instance_number>” e.g.

cxa.add_kernel('mykernel_001', '...')

In Experiment Workbench users can pick QCGExecutor to execute cxa snippet. As QCG

needs additional information from user on how to distribute kernel instances, user must fill in

a form. User specifies the site to be used and for each site a list of kernel instances to be

dpeloyed there, number of cores to be allocated and optionally reservation id. Users can but

don't have to specify site name and reservation id fields. If site name is not specified it's

QCGBroker's role to find suitable sites satisfying number of cores and availability of kernel

bundles. In this case QCGBroker uses information from internal registry or external

Information System to find suitable sites for given kernels. Kernels are identified by their

names, the same that are used in MaMe. After that, QCGBroker dispatches execution of

kernels to the QCGComputing installed on found site. On the site QCGComputing executes

MUSCLE. Since cxa refers to MUSCLE_KERNEL_REPO environment variable, this has to

be set in prior to execution of MUSCLE. This variable keeps a path to site-local repository of

kernel bundles e.g. /public/muscle_kernels that is configured in QCGBroker or

QCGComputing.

5.6.3 GridSpace Executor for AHE

This implementation is currently under development. It uses modified AHE Client written in

Java for authentication and executing jobs. The modifications were made so that the client is

easily embeddable in other Java applications.

Following list describes planned functioning of operations of this executor. It is unlikely that

any of it will change in the future as all of the design has already been discussed with AHE

authors.

D4.2 Software adaptation-UCL-v0.7 Page 39 of 72

MAPPER – 261507

• login - implementation of this operation is almost finished and is in testing phase.

Allows two ways of authentication:

• proxy certificate - when provided, executor will send it to AHE MyProxy server

through AHE Client and bound to temporary user name and password

generated by the executor. This user name and password are later used to

authenticate when submitting job to AHE runner machine.

• user name and password - when provided (and no proxy is present) executor

attempts use them to authenticate with MyProxy and download valid proxy

certificate (that should have been uploaded before using third party client).

In both cases the executor establishes a GridFTP connection with file stage server that the

runner machine will use for staging in/out.

• execute - not fully implemented. It uses modified AHE Client to create and submit

AHE Job Object to AHE runner machine (such as Mavrino). This job objects points to

special AHE application called gslaunch that is designed to execute scripts on behalf

of GridSpace user. When submitted, the AHE Client is set to await mode that

periodically polls the job runner for its status. Whet it is finished the operation returns.

The AHE Client used by this operation does not stage in or out any inputs or outputs

(this is different from behavior of the standalone client). This is because all resources

needed for job execution are managed by GridSpace directly on the stage server and

therefore are already in place.

• logout - connection to the stage server is closed. If temporary password and user

name where created by login operation they are cleared.

D4.2 Software adaptation-UCL-v0.7 Page 40 of 72

MAPPER – 261507

Above picture shows connection between particular elements in GridSpace- AHE integration.

The AHE Executor working on GridSpace machine communicates with MyProxy server

through AHE Client and with Stage server using GridFTP client. The runner machine stages

in/out input from/to the aforementioned stage server.

Master algorithm is as follows:

• Proper number of nodes is allocated through PBS. This is done as one singe

allocation (by using pbsdsh tool)

• The TaskManager is started.

• On each of the assigned nodes a Task process (Slave) is started (via pbsdsh tool)

that connects to TaskManager using DRb.

• As asked by a Task, TaskManager sends request to start the plumber

• As asked by a Task, TaskManager sends requests to start appropriate group of

kernels

• TaskManager prints the received Task's output to the screen.

Slave algorithm is as follows:

• Task connects to Task Manager using DRb and asks it for a job description

• Task receives a job description (request for staring a plumber or the kernels in a

single group)

• Task redirects the output and error streams to the Task Manager

D4.2 Software adaptation-UCL-v0.7 Page 41 of 72

MAPPER – 261507

In a case of SSH accessible resources the computational nodes share filesystem with the

Experiment Host, so the output files are seen immediately by File Browser which is a

standard part of GS Experiment Workbench. The details can be found in (Rycerz-DMC2011).

5.7 Cross-tool integration efforts in MUSCLE

As MUSCLE is meant as a low-level tool, to implement multiscale models in, no changes to

MUSCLE have been made to enhance cross-tool integration. However, both QCG-Broker

and Gridspace have been adapted for MUSCLE, which is listed in the respective paragraphs.

5.8 Cross-tool integration efforts in AHE

Integration between AHE and other tools in the MAPPER infrastructure happens in two

directions: higher level tools are coupled to AHE to act as clients, and AHE is coupled to

lower level tools, to facilitate submission. These two integration types are classified as

upstream integration and downstream integration respectively, and are discussed in the

sections below.

5.8.1 Upstream Integration

Upstream integration has involved coupling AHE with GridSpace, to allow applications

hosted in AHE to be called as components of a GridSpace managed workflow. Initially, this

was done by preparing shell scripts which automate the launching and monitoring of an AHE

hosted application, by calling AHE client commands to prepare and start the application, and

then polling the application's state until it is completed. These scripts are then treated as

atomic operations by GridSpace, and can be used as the building blocks of workflows.

To coupled AHE more cyclically with GridSpace, we have worked to make it possible to call

the Java AHE client API directly from GridSpace. Due to compatibilities between different

versions of the same library used by AHE and GridSpace, we had to update the AHE client

API to use newer versions of the libraries, which involved some code refactoring. We also

updated AHE client to use the Maven library loading system, in order to be further compatible

with the way GridSpace worked. We aslo make changes to the way AHE uses proxy

certificates to further enhance compatibility between AHE and GridSpace, and developed

interface classes which allow the AHE to be controlled by GridSpace.

In addition to updates to the client API, we also developed generic wrapper scripts to allow

GridSpace to execute arbitrary applications via AHE. GridSpace needs the ability to execute

arbitrary tasks on HPC resources, for example to pre and post process data and run

simulations. The generic wrappers allow GridSpace to execute any required tasks, via AHE.

D4.2 Software adaptation-UCL-v0.7 Page 42 of 72

MAPPER – 261507

5.8.2 Downstream Integration

The downstream integration efforts have consisted in extending AHE to submit jobs via the

QCG BES interface, now deployed on the majority of MAPPER resources. This has entailed

creating a new connector to allow AHE to submit jobs to QCG-Computing, and also

modifications had to be made to AHE server to enable it to stage files between sites

(previously, AHE server relied on the resource manager to perform file transfers).

Additionally, AHE has been extended to allow jobs to be submitted to into reservations

created by the QCG Broker. AHE's existing advanced reservation model has been updated,

entailing changes to both the client and server, to allow reservations created using QCG to

passed through to QCG-Computing when jobs are submitted.

6 Appendix B: Detailed software testing report

6.1 ISR3D

This page contains a range of performance benchmarks for the subcodes used in the

In-Stent Restenosis application

6.1.1 Palabos benchmarks

We have benchmarked our Palabos implementation of blood flow dynamics on the Huygens

supercomputer at SARA in Amsterdam. This 65TFLOP/s machine is equipped with around

3456 IBM POWER6 processors. We provide the wall-clock time spent to run atomistic

simulations until they converged as a function of the number of processes in the figure

below. The number of steps is the number of steps it took the code to converge for a given

geometry, being the number of particles an indicator of the size of the geometry (length of

the artery) simulated. In each In stent restenosis simulation for porcine arteries there are

approximately 200 geometry changes, therefore the code needs to converge 200 times.

D4.2 Software adaptation-UCL-v0.7 Page 43 of 72

MAPPER – 261507

Scaling was good, specially for a large number of particles.

6.1.2 SMC benchmarks

We have benchmarked our Agent Based Model for Smooth Muscle Cell (SMC) dynamics in a

local machine as the code is not yet parallel. The machine is an iMac with intel i5 processors

at 3.6 GHz. We observe the wall clock time against the number of agents used. The amount

of time it takes the code to complete an iteration is highly dependent on the amount of cells

that grow in that iteration, therefore the benchmarks shown below do not include any growth.

D4.2 Software adaptation-UCL-v0.7 Page 44 of 72

MAPPER – 261507

We tried to fit the results to a sqared or a cubic scaling with the number of agents. As said,

all the simulations for benchamarking of the SMC submodel were carried out without cellular

growth in order to minimise the variability between different runs.

6.2 Nanomaterials

6.2.1 CPMD benchmarks

We have not performed scalability tests of CPMD, as we currently only calculate the

potentials of a single clay sheet edge within our multiscale application. However, a report on

several scalability tests can be found at:

http://www.hpcadvisorycouncil.com/pdf/CPMD_Performance_Profiling.pdf

6.2.2 Atomistic LAMMPS benchmarks

We have benchmarked a range of atomistic simulations of nanocomposites on the Huygens

supercomputer at SARA in Amsterdam. This 65TFLOP/s machine is equipped with around

3456 IBM POWER6 processors. We provide the wall-clock time spent to run atomistic

simulations for 10000 steps as a function of the number of processes in the figure below.

D4.2 Software adaptation-UCL-v0.7 Page 45 of 72

http://www.hpcadvisorycouncil.com/pdf/CPMD_Performance_Profiling.pdf

MAPPER – 261507

In our application we use SMT to run 2 processes on a single core. Although this somewhat

worsens the overall scalability in the plot below, it also allows us to save 50% on our

consumption of compute resources. We have enabled SMT in all our tests that use more

than 32 cores. The idealized speedup lines do not take the inefficiency introduced by using

SMT into account.

6.2.3 Course-grained LAMMPS benchmarks

We have benchmarked a range of course-grained simulations of nanocomposites on the

Huygens supercomputer at SARA in Amsterdam. We provide the wall-clock time spent to run

course-grained simulations for 10000 steps as a function of the number of processes in the

figure below.

In our application we use SMT to run 2 processes on a single core. Although this slightly

worsens the overall scalability in the plot below, it also allows us to save 50% on our

consumption of compute resources. We have enabled SMT in all our tests that use more

than 32 cores.

D4.2 Software adaptation-UCL-v0.7 Page 46 of 72

MAPPER – 261507

6.3 QosCosGrid

We decided to measure the performance of the administrative layer component of the

QosCosGrid stack: the QCG-Computing service. The benchmarking tests concerned the job

submission and job management operations, which are the primary duties of any Basic

Execution Service. The proposed two types of the benchmarks aim to measure two important

performance metrics: response time and throughput. As nominal values would not provide

qualitative answer to the question: "Is the service performance rewarding?" we decided to

conduct comparison tests where we compared the performance of the QCG-Computing with

similar services: gLite CREAM CE [footnote:[http://grid.pd.infn.it/cream/]]

and UNICORE UAS [footnote:[http://unicore.eu/].] All the tests were performed

using a benchmark program written exclusively for the needs of these tests. The program

was based on the SAGA C++ API SAGA. Especially the two following SAGA adaptors (i.e.

implementations) were exploited:

• glite_cream_job (based on glite-ce-cream-client-api-c) - used to access the gLite

CREAM CE service,

• ogf_hpcbp_job (based on gSOAP) - used to access the OGSA BESBES interfaces of

UNICORE Atomic Services (UAS) and QCG-Computing service.

D4.2 Software adaptation-UCL-v0.7 Page 47 of 72

http://www.mapper-project.eu/web/guest/wiki?p_p_id=36&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_36_struts_action=%2Fwiki%2Fedit_page&_36_redirect=http%3A%2F%2Fwww.mapper-project.eu%2Fweb%2Fguest%2Fwiki%2F-%2Fwiki%2FMain%2FQosCosGridBenchmarks&p_r_p_185834411_nodeId=10532&p_r_p_185834411_title=BES
http://www.mapper-project.eu/web/guest/wiki?p_p_id=36&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_36_struts_action=%2Fwiki%2Fedit_page&_36_redirect=http%3A%2F%2Fwww.mapper-project.eu%2Fweb%2Fguest%2Fwiki%2F-%2Fwiki%2FMain%2FQosCosGridBenchmarks&p_r_p_185834411_nodeId=10532&p_r_p_185834411_title=SAGA

MAPPER – 261507

The use of the common access layer minimized the risk of obtaining distorted results due to

bottleneck in the client layer. Moreover, for the same reason, we decided to use the same

target resource for all benchmarks and middlewares.

6.3.1 The Testbed

The testbed was composed of two systems, each of them located in separate networks,

connected with Pionier[footnote: [http://www.pionier.net.pl/online/en/]]

Wide Area Network.

6.3.1.1 Client Machine

The client machine was a commodity HPC system. The base paramaters of the test system

were as follows:

• processors: 2 x 4 cores (Intel(R) Xeon(R) CPU E5345),

• physical memory: 11 GB,

• Operating System: Scientific Linux 5.3,

• RTT from the client machine to the cluster's frontend: about 12 ms.

6.3.1.2 Target Resources Provider

The target site was a one of the Polish NGI PL-Grid cluster: Zeus (88. place on TOP500 list

[footnote:www.top500.org/]). This HPC system can be characterized by the following

parameters:

• queueing system: Torque 2.4.12 + Maui 3.3,

• about 800 nodes,

• about 3-4k jobs present in the system,

• scheduler poll interval: 3.5 minutes,

• operating system: Scientific Linux,

For the purpose of the tests a subset of 8 nodes (64 cores) where assigned exclusively for

the 10 user accounts used for a job submission. The benchmarked services were deployed

on separate virtual machines of the following properties:

• Operating System: Scientific Linux 5.5,

• 1 virtual core, 2GB RAM (QCG-Computing and UNICORE)

• 3 virtual cores, 8 GB RAM (gLite CREAM)

D4.2 Software adaptation-UCL-v0.7 Page 48 of 72

MAPPER – 261507

6.3.2 Benchmark 1 - Response Times

For the first benchmark we developed a program that spawns N processes (each process

can use a different certificate - i.e. act as different user) that invoke the function

sustain_thread. Next, it waits until all the running processes have ended.

In general, the idea of the program is to keep in a system jobs_per_thread jobs for

predefined test_duration seconds and polling all the time about the job statuses (the

delays between successive query_state calls drawn from a predefined interval:

SLEEP_COEF).

The following snippet shows a pseudocode of the function `sustain_thread`:

1. start_timer()

2. for i = 1 .. jobs_per_thread

 2a: submit_job(job[i])

3. while (current_time < test_duration) do

 3a: for i = 1 .. jobs_per_thread

 3a1: if (! is_finished(job[i].last_state))

 3a11: sleep((rand() / RAND_MAX) / SLEEP_COEF)

 3a11: query_state(job[i])

 3a2: if (is_finished(job[i].last_state))

 3a21: submit_job(job[i])

4. stop_timer()

The function `submit_job(job)`:

1. start_timer()

2. job.job = service.create_job()

3. job.job.run()

4. stop_timer()

5. query_state(job)

The function `query_state(job)`:

1. start_timer()

2. job.last_state = job.job.get_state()

3. stop_timer()

At the end of tests, the average, minimal and maximal times of submitting a job

(submit_job) and querying about a job state (query_state) are printed. Additionally, the

program displays the number of all submitted jobs, the number of successfully finished jobs

D4.2 Software adaptation-UCL-v0.7 Page 49 of 72

MAPPER – 261507

(Done) and the number of the jobs finished with the other status (Canceled, Failed). In the

last case, the number of failures, i.e. exceptions thrown by the SAGA adaptors, is shown.

6.3.2.1 Test Runs

Every test was characterized by: maximal number of jobs per user, number of users

(concurrent processes), total number of jobs, test duration and maximal sleep time between

every successive query_state call. We conducted four test sets, for every of the three

tested middlewares, the paramaters of the tests are listed below:

• 50 jobs x 10 users = 500 jobs, 30 minutes, SLEEP_COEF = 10 seconds,

• 100 jobs x 10 users = 1000 jobs, 30 minutes, SLEEP_COEF = 10 seconds,

• 200 jobs x 10 users = 2000 jobs, 30 minutes, SLEEP_COEF = 10 seconds,

• 400 jobs x 10 users = 4000 jobs, 30 minutes, SLEEP_COEF = 10 seconds.

Results

• The average submit time of a single job

Test QCG 2.0 UNICORE UAS gLite CREAM

50 1.43 2.41 8.47

50x10 1.43 2.41 8.47

100x10 1.49 1.24 a 8.45

200x10 1.99 2.20 8.50

400x10 1.96 - b 8.24

• The average time of a query about a job status.

Test QCG 2.0 UNICORE gLite

50x10 0.38 2.73 0.20

100x10 0.35 1.61 0.36

200x10 0.63 3.73 0.24

400x10 0.47 - b 0.21

6.3.3 Benchmark 2 - Throughput

The test is based on the methodology described in the paper BENCH. Similar to the

approach described in the paper we aimed to measure the performance from the user

perspective. The test procedure consisted of two phases:

• submitting sequentially, one after another, N jobs into the target system,

• waiting until all jobs have ended.

The test job was a No OPeration (NOP) task, that finishes immediately after starting. We

measured the time between the submission of the first job and the finish of the last job. Our

improvements in the test methodology, over the aforementioned publication, were:

D4.2 Software adaptation-UCL-v0.7 Page 50 of 72

http://www.mapper-project.eu/web/guest/wiki?p_p_id=36&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_36_struts_action=%2Fwiki%2Fedit_page&_36_redirect=http%3A%2F%2Fwww.mapper-project.eu%2Fweb%2Fguest%2Fwiki%2F-%2Fwiki%2FMain%2FQosCosGridBenchmarks&p_r_p_185834411_nodeId=10532&p_r_p_185834411_title=BENCH
http://www.mapper-project.eu/web/guest/wiki?p_p_id=36&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_36_struts_action=%2Fwiki%2Fedit_page&_36_redirect=http%3A%2F%2Fwww.mapper-project.eu%2Fweb%2Fguest%2Fwiki%2F-%2Fwiki%2FMain%2FQosCosGridBenchmarks&p_r_p_185834411_nodeId=10532&p_r_p_185834411_title=B
http://www.mapper-project.eu/web/guest/wiki?p_p_id=36&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_36_struts_action=%2Fwiki%2Fedit_page&_36_redirect=http%3A%2F%2Fwww.mapper-project.eu%2Fweb%2Fguest%2Fwiki%2F-%2Fwiki%2FMain%2FQosCosGridBenchmarks&p_r_p_185834411_nodeId=10532&p_r_p_185834411_title=B
http://www.mapper-project.eu/web/guest/wiki?p_p_id=36&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_36_struts_action=%2Fwiki%2Fedit_page&_36_redirect=http%3A%2F%2Fwww.mapper-project.eu%2Fweb%2Fguest%2Fwiki%2F-%2Fwiki%2FMain%2FQosCosGridBenchmarks&p_r_p_185834411_nodeId=10532&p_r_p_185834411_title=A

MAPPER – 261507

• submitting the jobs using k processes/users,

• using one client API (SAGA) instead of the command-line clients,

• single, real production, testbed environment.

6.3.3.1 Test Runs and Results

The test sets were parametrized by the following parameters:

• number of concurrent threads (k),

• whether all threads used single client certificate or not,

• total number of jobs (N).

Altogether we ran 4 test-sets characterized by the following parameters:

• 1 user, 1 thread, 500 jobs,

• 1 user, 10 thread, 500 jobs (50x10),

• 10 users, 10 thread, 500 jobs (50x10),

• 10 users, 10 thread, 1000 jobs (10x100).

The results are presented in the figures below:

D4.2 Software adaptation-UCL-v0.7 Page 51 of 72

MAPPER – 261507

D4.2 Software adaptation-UCL-v0.7 Page 52 of 72

MAPPER – 261507

Unfortunately in the second benmark the bottle-neck was the throughput of the Maui

scheduler and size of the dedicated testbed partition (8 machines), which imposed that only

64 jobs could be scheduled per one scheduling cycle (at least 3.5 minutes).

6.4 GridSpace

6.4.1 Tools Usability Tests

During first MAPPER seasonal school, we have performed usability tests of MaMe, MAD and

GridSpace Experiment Workbench tools based on: John Brooke Usability evaluation in

industry, SUS—a quick and dirty usability scale (CRC Press, Boca Raton, FL), pp 189–194

(1996) . After making assignments (available on http://www.mapper-

project.eu/web/guest/mad-mame-ew), the school participants were asked questions about

usability of the system they used. The obtained average SUS score for the tools was 68

points (for 100 possible; standard deviation was 18) . The average was calculated from

answers from 10 participants.

As the tools are still under the development we have also collected specific remarks that

could potentially help to improve their usability. The request from most of the participants

was to improve interface for parameter management of application submodules. Currently,

we are working the improvements. We also plan to perform similar tests during the second

MAPPER seasonal school planned in M30 of the project.

D4.2 Software adaptation-UCL-v0.7 Page 53 of 72

http://www.mapper-project.eu/web/guest/mad-mame-ew
http://www.mapper-project.eu/web/guest/mad-mame-ew

MAPPER – 261507

6.4.2 GridSpace Continuous integration and testing

The Grid Space project uses continuous integration for building and testing applications. The

Continuum integration server builds whole application every 4 hours. Each build consists of

compiling, running unit and integration tests (see in following sections) and assembling an

application to a package (jar or war). The main goal of this process is to ensure that the

developers are constantly notified about errors in code correctness or functionality so that

they can react appropriately The Continuum server is also responsible for deploying latest

version of Experiment Workbench tool to a development web application server. Thanks to

that the latest development version of the application is automatically available for manual

testing or using.

During the development of GridSpace EW we have written integration and unit tests that

check the correctness and usability of this tool. Both kinds of tests were written in Java using

the Junit library. More detailed description follows.

6.4.2.1 Unit tests

These tests concern single functionality and behavior of piece of Java code (like method).

We ensure maximum isolation of particular tests from other parts of the system using mock

code created with Mockito library. Additionally, we sometimes use unit tests for documenting

a bug found in the code. Such test reproduces programatically the conditions the problem

occurred in and reduces the probability that previously fixed defect will reappear unnoticed.

Because these tests are usually simple and fast to execute they are used to pinpoint the

erroneous code and quickly check functionality being developed.

6.4.2.2 Integration tests

Integration tests first set up a testing environment consisting of a few components and

optionally a connection to external system and invoke some operations on subjects of the

test. The examples are QCG executor component tests which connect to external QCG

server and login to dedicated testing account on the QCG broker. Then the test code invokes

an execute operation and checks whether the operation was successful and the expected

output appeared. This is performed using different configurations of the execution process

and different experiment snippets. Similar tests for integration with AHE are currently being

written together with the main code.

The integration tests facilitate keeping whole application working and detecting errors caused

by changes in communication interfaces with external systems. Much like the unit tests they

also ensure that during the development old functionality is maintained. Howerev, they they

are usually longer and more complex.

D4.2 Software adaptation-UCL-v0.7 Page 54 of 72

http://code.google.com/p/mockito/
http://www.junit.org/
http://continuum.apache.org/

MAPPER – 261507

6.4.2.3 Code coverage

To present the quality of our tests we use metrics called code coverage that gives a degree

to which code have been tested. In our case it is evaluated using two criteria:

• number of lines of code invoked during tests to total number of lines of code (line

coverage)

• number of code branches that get invoked during tests to total number of code

branches (branch coverage)

The following table presents code coverage for each GridSpace Experiment component. All

values are expressed as percentage and where gathered using the Cobertura tool.

Component

Name
Component description

Line

coverage

Branch

coverage
#Classes

EW*
Experiment workench web

application
8 4 139

core Core utilities and interfaces 45 32 45

executors

definition of interfaces for

integration with external

computational resources

0 0 30

provenance
gathering and storing provenance

data
49 32 30

experiment
basic interfaces and classes for

handling experiment definition
47 13 19

ssh-executor

executing experiments using

ordinary SSH connection and

authentication

47 31 22

*-excluding GWT's client packages

When interpreting these results one should keep in mind that the EW component is mainly a

web-based application that provides GUI and uses other components for executing an

experiment. Unit and integration testing is not suitable for such applications and therefore the

code coverage is relatively small in this case.

6.4.2.4 Performance, reliability and conformance tests of Experiment Workbench

As GridSpace2 Experiment Workbench is still in development phase the ultimate

performance, reliability and conformance tests are expected in the future. However, the

architecture and design patterns being applied in the software already follow the good

practices in testing which will allow for carrying out such tests during the software evaluation

and optimization phase.

D4.2 Software adaptation-UCL-v0.7 Page 55 of 72

http://www.mapper-project.eu/c/wiki/get_page_attachment?p_l_id=10601&nodeId=10532&title=GridSpaceTests&fileName=cobertura.sourceforge.net%2F

MAPPER – 261507

Experiment Workbench being a web application inteded to enable pervasive access for the

users using web browsers needs to be examinated in terms of browser compatibility

including all major web browsers according to e.g StatCounter wordwide analysis published

annually. As for 2012 their analysis show that MicroSoft Internet Exporer (29.05%), Google

Chrome (23.22%), Mozilla Firefox (21.76%), Safari (13.49%), Opera (5.2%) are the key

vendors taking almost 92.72% of the market. Experiment Workbnech must be supported by

the most up-to-date version of these browsers and their previous versiosn in order to ensure

both long-term support from these browsers and availability for expected treshod of 75% of

web browser users.

To meet this indicator Experiment Workbench is taking advatage of web frameworks (mostly

Google Web Toolkit) which by design addresses the cross-browser compatibility concern.

Moreover, by applying Model-View-Presenter design pattern the browser-specific layer is

made as thin as possible, thus greater part of the code is web browser-agnostic.

The performance aspect can't be underesimated as it determines scalability of the solution in

terms of resources and costs to be born in order to ensure desired system throughput. The

metrics used to measure the throughput will be:

• A number of benchmark experiments being excuted in parallel through the same

instance of Experiment Workbench with a given amount of hardware resources.

Computational demands of benchmark experiments are irrevelant in this case as they

introduce load on execution backend (grid sites) while capability being examinated is

the throughput of the Experiment Workbench. This will give estimation of hardware

resources usage by a single benchmark experiment run.

• A number of open user sessions to the same instance of Experiment Workbench with

a given amount of hardware resources. This will help investigate the minimal

resources footprint that is generated by a single user session.

Performance tests will be easy to develop owing to the model-view-presenter design pattern

being applied in Experiment Workbench. In conjunction with gwt-syncproxy library they

provide a way for automatic testing of functionallity without a must of running brower-side

user interface.

In addition to that, the reliability tests will be carried out by monitoring the instances of

Experiment Workbench under a real or artificially generated load. This will help identify

longundesired long-term effects e.g. resource leaks.

D4.2 Software adaptation-UCL-v0.7 Page 56 of 72

MAPPER – 261507

6.4.3 Mapper Memory Registry (MaMe)

The Mapper Memory Registry is a standalone server, which uses its persistence layer in

order to provide storage and publishing capabilities for a range of MAPPER use cases

(module registry, XMML repository). For more details on its internal structure, please consult

e.g., Section 8.2.2.3 in D8.1 deliverable.

MaMe utilizes the model-view-controller methodology for its internal architecture and, as

such, need these three elements tested. We have approached to the problem threefold: by

designing and applying a set of unit testing for model and controller layers, by measuring the

performance of REST publishing element and by testing compatibility of the view layer with

the newest web browsers.

Unit testing. The domain model of MaMe (comprising several different entities which are

subject of publishing and sharing inside the registry), its structure, consistency and validity, is

being continuously tested by a set of unit tests. Also, the controller layer, which, apart from

the basic CRUD set of operations, provides more complex capabilities, is being tested with a

separate set of unit tests. Altogether the validity of these two layers are tested by a set of 87

assertions (as of 12.03.2012) and that set grows with any new functionality being added to

MaMe (test-driven development).

MaMe is a standalone server and, as such, does not require any integration testing (or, for

that matter, continuous integration setup). It is, however, advisable, that other tools which

use MaMe through its REST API, deploy such techniques, for integration testing.

Performance testing. As MaMe provides a set of REST APIs, for other elements of Mapper

Toolbox, it is useful to measure the performance of these endpoints. Out from the complete

set of REST operations, we have chosen three representatives, to measure how quickly they

are capable of returning a valid response. All tests are taken on the production deployment of

MaMe from a local computer (this resembles quite accurately the usual user environment,

where tools like MASK or MAD contact MaMe for some metadata).

For the first test, we have chosen the [models_list] operation, as the most demanding -

it takes the whole list of Submodules, Mappers and Filters inside the registry, builds a single

JSON document (around 150 kB) and returns it to the caller. We performed several hundreds

calls and the entire operation takes about 0.83 seconds client-side. This includes connection

establishment and the TCP handshake. On the server-side, the same operation takes 0.58

seconds (the rest 0.25 seconds is taken by request preparation, communication and

demarshalling of the response). However, when the HTTP connection is being reused from

call to call (the usual mode of operation for MaMe clients like MASK and MAD), the

performance rises to 0.64 seconds on the client-side (total wall-clock time). Since this is a

D4.2 Software adaptation-UCL-v0.7 Page 57 of 72

MAPPER – 261507

kind of holistic operation, it is designed to be called quite infrequently (probably once for

every user login to MAD) - and this allows us to decide such a delay is acceptable.

In order to measure less demanding, faster operation, we have performed similar tests for

the [experiments_lis] API endpoint. It returns a smaller JSON document (a little more

than a kilobyte) and it requires MaMe to perform much smaller database lookup. For the

entire operation, the wall-clock time on the client side is 0.046 seconds (out of which 0.013

seconds are spent in the server). In the connection reuse mode, the entire operation takes

0.021 seconds. Clearly, here much higher impact is introduced with the connection and

handshake procedures.

Finaly, to also measure update (write) operations performance, we used the

[add_base/Filter] operation to add many new Filters to the registry. In contrary to two

above methods, this requires basic authentication and relies on the POST HTTP method (not

GET). However, due to very small amount of information being exchanged between the client

and MaMe, the entire procedure takes only 0.037 seconds on average (including the

authentication). This figure we also find acceptable.

Browser conformance testing was performed manually, by using MaMe's web UI from

various Web browsers. At the moment of writing this deliverable, MaMe UI works properly

with Internet Explorer (ver. 9.0 running on Windows 7), Chrome (ver. 17.0 on both Linux and

Windows 7), Opera (ver. 11.50 on Linux and ver. 11.61 on Windows 7) and Firefox (ver. 10.0

on Linux).

6.4.4 Multiscale Application Developer (MAD)

MAD is a web application providing convenient and user-friendly set of tools allowing users

to compose Mapper applications and export them to executable experiments inside

GridSpace Experiment Engine. As a source of information MAD uses the MaMe registry by

means of JSON-enabled set of REST APIs. The modules obtained from the registry are

combined by users into applications by applying simple drag-and-drop routines inside a web

browser. For this to be possible MAD utilizes a few libraries namely Google Web Toolkit as

the integration platform, lib-gwt-svg for SVG graphics support and gwt-dnd for handling drag-

and-drop. Combination of these requires additional effort to support available web browsers.

Currently, as MAD is still being developed, support for latest Firefox and Google Chrome

browsers for both Window and Linux platforms is ensured. In future, tweaks to support other

major browsers (e.g. Internet Explorer, Opera) will be applied.

MAD relies on external components within the Mapper infrastructure which are MaMe - the

model registry and Experiment Workbench - the execution engine. The communication

D4.2 Software adaptation-UCL-v0.7 Page 58 of 72

MAPPER – 261507

between the components is implemented by using well-known standards to minimize errors

and ensure stability. As the MaMe registry uses JSON notation to share its contents Jackson

processor (http://jackson.codehaus.org) and Jersey library (http://jersey.java.net/) were used

to parse and produce responses and requests to the registry. The Experiment Workbench on

the other hand prefers the XML notation to communicate with external components. In this

case one of the JAXB implementations (provided by Sun Java Runtime) was used to ensure

stable communication. Use of the mentioned libraries makes the integration stable and

requires minimal set of integration tests on the MAD side.

Testing of such highly interactive user interface is difficult to be automated. Existing web

testing frameworks (e.g. Selenium) do not support recording of drag-and-drop actions. That

is why the structure of the MAD project follows the MVP principles

(http://code.google.com/webtoolkit/articles/mvp-architecture.html) which let unit-test user

interfaces all the way up to the views. Additionally, the core of the application is abstracted

into a set on controllers and presenters independent of the view engine implementation

(currently GWT with supporting libraries).

6.5 MUSCLE

MUSCLE has been tested on an single iMac with an Intel i3 3.2 GHz processor running Mac

OS X 10.7.3 to measure communication library overheads. It is connected to a dual core Intel

2160 1.8 GHz processor running Ubuntu Server on the same network to measure the

influence of using network. In another test, we use MTO between Reef (a PL-Grid resource

in Poznan, Poland; a 16-core Intel Xeon E5530 2.4 GHz node) and Huygens (a PRACE Tier-

1 resource in Amsterdam, The Netherlands; a 64-core IBM Power6 4.7 GHz node).

6.5.1 Results

The following measurements have been performed so far, by sending messages of different

sides from one submodel to another and back, with details in the paragraphs and tables

below. Note that the average time is in fact the round-trip time (RTT), of one message being

sent to the other submodel and that message repeated to the first. By dividing by two, the

time for sending a single message is approximated.

D4.2 Software adaptation-UCL-v0.7 Page 59 of 72

http://code.google.com/webtoolkit/articles/mvp-architecture.html)
http://jersey.java.net/)

MAPPER – 261507

MUSCLE run in a single instance has extremely high communication speeds and low

latency, with two MUSCLE instances it is still acceptable, with a latency of less than 2

milliseconds RTT and a bandwidth of 100 MB/sec. On a single network latency is slightly

increased at 4 ms RTT and a bandwidth of just 30 MB/sec. The latency comparable but a bit

more unpredictable while using MTO, but stays under 8 ms RTT; the bandwidth stays the

same. Using MTO on a single machine, both latency and bandwidth seem to suffer slightly.

Over a link between Reef (in Poznan, Poland) and Huygens (in Amsterdam, the Netherlands)

the latency is higher here, and more than the distance should account for, at around 115 ms

RTT. This compares to a ping time of 38 ms, or, three messages back and forth for a single

message. The bandwidth fluctuates between 7 and 13 MB/sec. Comparing with the other

results, it would seem that this is a problem with the connection rather than due to

performance of MUSCLE.

Overall, MUSCLE does not seem to introduce much overhead. Largest factors are whether it

is using sockets or within-process communication, and the high latency effect between

distant super-computers.

Below are the precise measurement tables.

6.5.2 MUSCLE on a single machine, with a single instance

Each value is calculated for RTT. Sending 10000 messages in total. For each data size, 30

tests are performed, each sending 10 messages.

D4.2 Software adaptation-UCL-v0.7 Page 60 of 72

MAPPER – 261507

Size (kiB) Total (ms) Avg (ms) StdDev (ms) StdDev (%) Speed (MB/s)

0 404 1.349 0.307 22.726 NaN

1 351 1.172 0.227 19.367 1.747

2 308 1.029 0.284 27.628 3.981

4 241 0.805 0.124 15.473 10.181

8 233 0.777 0.122 15.663 21.089

16 252 0.843 0.184 21.814 38.884

32 224 0.749 0.056 7.499 87.457

64 276 0.921 0.127 13.747 142.280

128 439 1.464 0.191 13.079 179.056

256 702 2.343 0.828 35.351 223.794

512 1080 3.603 0.130 3.596 291.020

1024 2059 6.864 0.191 2.785 305.538

2048 4429 14.766 1.704 11.540 284.050

4096 9993 33.313 3.447 10.346 251.815

8192 20816 69.387 3.837 5.530 241.793

16384 41262 137.541 7.623 5.542 243.959

32768 83177 277.259 4.923 1.776 242.044

65536 182713 609.045 24.691 4.054 220.374

6.5.3 MUSCLE on a single machine, with two instances

In this case, communication is performed over local sockets. Values are NOT divided by 2.

Each value is calculated for RTT. Sending 10000 messages in total. For each data size, 30

tests are performed, each sending 10 messages.

Size (kiB) Total (ms) Avg (ms) StdDev (ms) StdDev (%) Speed (MB/s)

0 557 1.857 0.250 13.466 NaN

1 521 1.739 0.357 20.511 1.178

2 509 1.699 0.309 18.197 2.412

4 505 1.685 0.653 38.739 4.863

8 528 1.760 1.697 96.429 9.307

16 436 1.457 0.348 23.916 22.497

32 659 2.197 1.936 88.139 29.831

64 715 2.385 0.420 17.622 54.965

128 976 3.253 0.780 23.971 80.575

256 1465 4.887 0.167 3.423 107.291

512 2576 8.588 0.143 1.665 122.097

1024 4806 16.020 0.508 3.170 130.905

2048 10292 34.308 1.899 5.536 122.255

4096 23343 77.812 3.326 4.275 107.807

8192 46679 155.598 3.243 2.084 107.824

16384 95138 317.129 6.000 1.892 105.807

32768 203558 678.529 137.618 20.282 98.903

D4.2 Software adaptation-UCL-v0.7 Page 61 of 72

MAPPER – 261507

65536 406353 1354.511 65.008 4.799 99.089

6.5.4 MUSCLE on two machines on the university network

Values are NOT divided by 2. Each value is calculated for RTT. Sending 10000 messages in

total. For each data size, 30 tests are performed, each sending 10 messages.

Size (kiB) Total (ms) Avg (ms) StdDev(ms) StdDev(%) Speed (MB/s)

 0 1227 4.090 0.351 8.593 NaN

 1 1227 4.091 0.600 14.673 0.501

 2 1132 3.776 0.345 9.127 1.085

 4 1051 3.506 0.344 9.815 2.337

 8 1025 3.418 0.400 11.716 4.794

 16 1097 3.658 0.477 13.035 8.958

 32 1267 4.225 0.393 9.301 15.513

 64 1909 6.365 1.469 23.087 20.594

 128 3291 10.973 2.763 25.176 23.890

 256 5093 16.979 2.641 15.556 30.879

 512 9724 32.414 3.970 12.248 32.350

 1024 19290 64.300 5.404 8.405 32.615

 2048 38463 128.213 6.586 5.137 32.714

 4096 76489 254.964 19.046 7.470 32.901

 8192 151772 505.909 18.913 3.738 33.163

 16384 310636 1035.455 34.738 3.355 32.405

 32768 628682 2095.609 51.171 2.442 32.024

 65536 1387174 4623.915 215.892 4.669 29.027

6.5.5 MUSCLE between Huygens and Reef, using the MTO

Size (kiB) Total (ms) Avg (ms) StdDev(ms) StdDev(%) Speed (MB/s)

0 57438 191.461 1.734 0.905 NaN

1 34064 113.549 0.254 0.224 0.018

2 34061 113.537 0.352 0.310 0.036

4 34883 116.280 3.303 2.841 0.070

8 34093 113.644 1.328 1.168 0.144

16 34859 116.197 3.391 2.919 0.282

32 34286 114.290 1.460 1.278 0.573

64 35317 117.726 10.996 9.341 1.113

128 35618 118.728 3.656 3.080 2.208

256 35479 118.264 3.767 3.185 4.433

512 36811 122.705 4.570 3.725 8.546

1024 47435 158.118 72.290 45.719 13.263

D4.2 Software adaptation-UCL-v0.7 Page 62 of 72

MAPPER – 261507

2048 175250 584.170 278.434 47.663 7.180

4096 274489 914.966 55.014 6.013 9.168

8192 385815 1286.052 141.569 11.008 13.046

16384 589310 1964.367 235.537 11.990 17.082

32768 1060300 3534.334 316.179 8.946 18.988

6.5.6 MUSCLE between two computers on the local network, using MTO

Size (kiB) Total (ms) Avg (ms) StdDev(ms) StdDev(%) Speed (MB/s)

0 12001 40.004 0.238 0.596 NaN

1 1469 4.897 0.257 5.254 0.418

2 1407 4.691 0.376 8.012 0.873

4 2271 7.571 17.180 226.906 1.082

8 1296 4.323 0.750 17.353 3.790

16 1317 4.392 0.254 5.783 7.461

32 1555 5.185 0.458 8.829 12.639

64 8460 28.200 4.517 16.018 4.648

128 3618 12.063 3.217 26.671 21.731

256 5245 17.486 2.365 13.522 29.983

512 9866 32.887 2.656 8.076 31.884

1024 19356 64.520 3.879 6.011 32.504

2048 38328 127.762 4.694 3.674 32.829

4096 77218 257.395 11.366 4.416 32.590

8192 155888 519.628 29.123 5.605 32.287

16384 305093 1016.978 16.594 1.632 32.994

32768 649366 2164.555 49.819 2.302 31.004

65536 1445309 4817.698 80.363 1.668 27.859

6.5.7 Two MUSCLE instances on the same machine, using MTO

Size (kiB) Total (ms) Avg (ms) StdDev(ms) StdDev(%) Speed (MB/s)

1 797 2.657 0.450 16.941 0.771

2 706 2.354 0.194 8.234 1.740

4 711 2.371 0.320 13.509 3.455

8 728 2.427 0.873 35.971 6.750

16 732 2.442 0.896 36.684 13.418

32 826 2.756 0.346 12.565 23.777

64 1025 3.420 0.853 24.938 38.328

128 1318 4.396 0.290 6.595 59.638

256 2141 7.138 1.531 21.453 73.454

512 3350 11.167 0.414 3.705 93.901

1024 6251 20.838 0.493 2.366 100.641

D4.2 Software adaptation-UCL-v0.7 Page 63 of 72

MAPPER – 261507

2048 12789 42.632 1.065 2.497 98.384

4096 36765 122.551 92.713 75.653 68.450

8192 72287 240.958 85.006 35.278 69.627

16384 160505 535.020 219.298 40.989 62.716

32768 283970 946.567 412.473 43.576 70.897

65536 562114 1873.716 569.141 30.375 71.632

6.6 Application Hosting Environment

AHE is designed to simplify user experience, and as such benchmarking of the tool has

involved conducting usability studies to compare AHE to other similar tools.

6.6.1 Usability Study Methodology

Our usability study comprised two sections. Globus and UNICORE are the de facto standard

middleware tools used to access contemporary production grids to which we have access.

By default, Globus is accessed via command line tools to transfer files and submit and

monitor jobs. UNICORE has both command line and graphical clients to launch and monitor

applications, as does AHE. The first part of our study compared the usability of the Globus

command line clients with the usability of the AHE command line client, and the usability of

the UNICORE Grid Programming Environment (GPE) graphical client (which we ourselves

found easier to use than the full UNICORE Rich Client) with the usability of the AHE

graphical client. The version of Globus used was 4.0.5, submitting to pre-WS GRAM; version

6.3.1 of UNICORE was used, with version 6 of the GPE client. AHE version 2.0 was used for

the AHE based tests, with a prerelease version of AHE+ACD used for the security tests.

The remaining part of our usability study set out to evaluate our second hypothesis. We

compared a scenario where a user was given an X.509 certificate and had to configure it for

use with AHE to a scenario where a user invoked ACD to authenticate to AHE. Both sections

of the study can be considered as representing `best case scenarios'. Firstly, all tools were

installed and preconfigured for the user. An actual user of TeraGrid or DEISA would most

likely have to install and configure the tools herself. In the security section of the study, the

user was given an X.509 certificate to employ with AHE. In reality, a user would have to go

through the process of obtaining a certificate from her local Certificate Authority, a time

consuming task that can take between two days and two weeks.

In passing we note that while other middleware tools, and other interfaces to Globus and

UNICORE, certainly do exist, these interfaces are often community specific and not available

to all users. Our tests evaluate the default minimum middleware solutions available to

TeraGrid and DEISA users.

D4.2 Software adaptation-UCL-v0.7 Page 64 of 72

MAPPER – 261507

6.6.2 Participants

Some usability experts maintain that five is a suitable number of subjects with which to

conduct a usability study, since this number of people will typically find 80\% of the problems

in any given interface. However, our study does not seek bugs in a single interface: it asks

participants to compare the features of several middleware tools to find which is most usable.

To do this we need a sufficient number of participants to be sure that our results are

statistically significant. To determine the minimum number of participants required, we

conducted a power analysis, calculating the probability that a statistical test will reject the null

hypothesis or alternatively detect an effect. In order to determine the statistical significance of

our results, we used a one-tailed paired t-test. For a reasonable statistical power of 0.8

(i.e. the probability that the test will find a statistically significant difference between the

tools), we therefore determined we would need a minimum of 27 participants, plus a few

more to allow for those who might drop out for various reasons.

We recruited a cohort of 39 participants consisting of UCL undergraduate and postgraduate

students, each of whom received a £10 Amazon Voucher for taking part in the study. These

participants came from a wide range of backgrounds in the humanities, sciences and

engineering, but none had any previous experience in the use of computational grids. This

cohort is therefore analogous to a group of new users of computational grids (e.g. a first year

PhD student) in terms of educational background and experience.

6.6.3 Tasks

As discussed, our usability study was split into two sections. In the first section participants

were asked to compare Globus, UNICORE and AHE by performing three separate tasks:

• Launch an application on a grid resource using the middleware tool being tested. The

application in question (pre-installed on the grid resource) sorted a list of words into

alphabetical order. The user had to upload the input data from their local machine and

then submit the application to the machine.

• Monitor the application launched in step 1 until complete.

• Download the output of the application back to the local machine once it has

completed.

The second section compared the use of X.509 certificates to ACD authentication. In this

section, users were asked to perform the following two tasks:

• Configure the AHE client with to use an X.509 certificate, and then submit a job using

the graphical client.

D4.2 Software adaptation-UCL-v0.7 Page 65 of 72

MAPPER – 261507

• Authenticate to AHE using an ACD username and password, and then submit a job

using the graphical client.

In order to avoid the typical queue waiting problem when using HPC resources, all of the

tests ran the application on the same server, based locally in the Centre for Computational

Science at University College London, which was used solely for the purpose of running the

usability test application.

6.6.4 Data Collection

Prior to beginning the tasks outlined above, each participant was asked a number of question

related to their academic background, general IT experience and previous experience of

using grid middleware tools. After each task, we asked the participants to rate the difficulty of

the task and their satisfaction with their performance of the task, using a Likert scale (i.e. five

options from strongly agree to strongly disagree). In addition, we timed how long it took the

user to complete each task. After using each tool, we asked the participant to evaluate it

using the System Usability Scale (SUS), via ten questions about his impression of the tool

giving a standard measure of usability scored out of 100, which is suitable for making

comparisons between tools. After completing the two sections of the study, each participant

was able to give freeform comments on impressions of the tools used, if desired. While

performing each task, an observer watched each participant and recorded whether or not the

task was completed successfully.

6.6.5 Delivery

To ease the process of data collection and tabulation (and the timings of tasks), we

developed a simple web platform from which to deliver the usability study. The study was

conducted in the Centre for Computational Science at University College London. Each

participant in the study was assigned an ID number, which they used to log on to the delivery

platform. All of the various usability metrics were then recorded against this ID in a database.

Before starting the study, the delivery platform displayed a page explaining to the user the

purpose of the study. The observer also explained to the participant that he was not able to

provide any assistance or answer questions relating to the tasks being performed.

The delivery platform provided web forms on which participants could record the answers to

the questions outlined in the previous section. The delivery platform also described the

operations that the user had to carry out. Prior to performing the task, the user had to click a

Start button, which set a timer running for the task, and a Stop button when it was completed.

When performing a task, the user was given a documentation snapshot, taken from the tool's

documentation, that instructed them how to perform the task (included as electronic

D4.2 Software adaptation-UCL-v0.7 Page 66 of 72

MAPPER – 261507

supplementary information to this paper). As noted, all of the tools were preconfigured on the

machine used by the participant to perform the tasks. Each of the tasks in the two sections

was assigned in a random order, to minimize the risk of bias entering the study.

6.6.6 Results

Result
Globus

Toolkit

AHE

CLI

UNICORE

GUI

AHE

GUI

AHE with

Cert

AHE with

ACD

Percentage of successful

users
45.45 75.76 30.30 96.97 66.67 96.97

Percentage of users

satisfied with tool
27.27 53.54 47.47 79.80 51.52 87.88

Percentage of users who

found tool difficult to use
45.45 25.25 26.26 5.05 27.27 0.00

Table 1: Summary of statistics collected during usability trials for each tool under

comparison.

Our usability tests show very clear differences between the different tools tested, based on

the usability metrics defined above. Table 1 presents key measurements from our findings.

Due to problems with the delivery platform (such as web browser crashes half way through a

set of tests), the results from six participants have been excluded from our results, meaning

that the results presented have been gathered from a cohort of 33 participants.

We applied a 1-tailed, paired t-test to our results to determine the statistical significance of

any differences between the tools being compared. We compared the Globus command line

client with the AHE command line tool, and the UNICORE graphical client with the AHE

graphical client. We also compared the AHE using a digital certificate to the AHE using ACD

authentication. The P-values of these t-tests are shown in table 2, along with mean scores

for the five different metrics. A p < 0.05 shows that the difference between the tools is

statistically significant.

Our first usability metric looked at whether or not a user could successfully complete the set

of tasks with a given tool. Table \ref{tab:results} summarizes the percentage of participants

who were able to complete all tasks for each tool. Although the failure data is measured on

an ordinal scale (Success, Failed etc.), we have converted it to numerical data in order to

more easily compare results. The mean failure rate is shown in table 2, with a lower score

meaning there were less failures when using the tool. Also shown in table 2 are the P-value

scores; the AHE command line was found to be less failure prone than the Globus command

line (t(33) = 1.41,p < 0.05), the AHE GUI was found to be less failure prone than the

D4.2 Software adaptation-UCL-v0.7 Page 67 of 72

MAPPER – 261507

UNICORE GUI (t(33) = 1.07, p< 0.05) and AHE with ACD was found to be less failure prone

than AHE with X.509 certificates (t(33) = 1.03, p < 0.05).

Our second usability metric was a measure of how long it took a user to complete an

application run. Figure 1 plots the mean times taken to complete the range of tasks with each

tool. Again, the differences are statistically significant as shown in table \ref{tab:ttests}, with

participants able to use AHE to run their applications faster than via Globus or UNICORE,

and AHE with ACD faster than AHE with X.509 certificates.

Our third usability metric measured user satisfaction with the tools used. In table 1 we have

summarized the percentage of participants who reported being either Satisfied or Very

Satisfied with a tool. The Likert scale data is again ordinal, but we have converted it to

numerical data in order to compare it, according to commonly practice. The mean

satisfaction level is reported in table \ref{tab:ttests}, a higher score meaning that a user was

more satisfied with the tool. Again, users reported being more satisfied with the AHE than

with other tools, and with ACD than with X.509 certificates, as show by the P-value scores

table.

Our fourth usability metric looked at how difficult a user perceived a tool to be. Again the

percentage of users who found a tool difficult or very difficult is summarized in table 1. The

mean difficulty scores are shown in table 2, with a higher score meaning that the tool was

perceived as being more difficult to use. The AHE GUI client was perceived as being less

difficult to use than the UNICORE GUI client (t(33) = 1.73, p< 0.05), the AHE command line

interface was perceived as being less difficult to use than the Globus command line tools

(t(33) = 2.55, p < 0.05), and AHE with ACD was perceived as being less difficult than AHE

with digital certificates (t(33) = 1.52, p < 0.05).

Our final usability metric measured a participant's overall impression of a tool using the SUS

usability scale. The mean SUS score is shown in table 2, with a higher score meaning the

tool is more usable. Again, we found statistical significance, with AHE GUI being rated as

more usable than the UNICORE GUI, AHE command line being rated higher than Globus,

and AHE with ACD being rated higher than AHE with digital certificates, as summarized in

table 2.

D4.2 Software adaptation-UCL-v0.7 Page 68 of 72

MAPPER – 261507

Table 2: The mean scores and t-test P-values for our five usability metrics, comparing the

AHE and Globus command line clients, the AHE and UNICORE graphical clients, and the

AHE with and without ACD.

Figure 1: Mean time taken to complete a range of tasks with each tool.

D4.2 Software adaptation-UCL-v0.7 Page 69 of 72

MAPPER – 261507

Figure 2: a comparison of the percentage of users who were satisfied with a tool and the

percentage who could successfully use that tool.

6.6.7 Discussion of Results

The results presented in the previous section clearly confirm our hypotheses, that the

application interaction model used by the AHE is more usable than the resource interaction

model implemented in the UNICORE and Globus toolkits, with AHE found to be more usable

for each of our defined usability metrics. We believe the reason for this is due to the fact that

AHE hides much of the complexity of launching applications from users, meaning that (a)

there are less things that can go wrong (hence the lower failure rate) and (b) there are less

things for a user to remember when launching an application (hence the higher satisfaction

with and lower perceived difficulty of AHE tools). The fact that the AHE model encapsulates

input and output data as part of an application's instance (and stages data back and forth on

the user's behalf) means that application launching is faster via AHE.

In the case of ACD security, the familiar username and password were clearly found to be

more usable than X.509 certificates, but it should also be stressed that the scenario modelled

here represented the `best case' scenario, where a user was already given an X.509

certificate with which to configure their client. As previously noted, in the real world a user

would have to go through the laborious process of obtaining an X.509 certificate from their

certificate authority, which renders the ACD solution far more usable still.

The failure rate when using a tool is dependent on all of the subtasks being completed

successfully; if one task failed, it meant that the following tasks could not be successfully

completed (marked `Failed due to previous' by the observer). This is, however, analogous to

real world scenarios where, for example, a user will not be able to download data from a grid

resource if his job is not submitted correctly.

We noted particular problems experienced by participants using the UNICORE middleware,

related to staging files and configuring job input files. However, these problems were not

noted by the participants themselves, due to the jobs appearing to submit properly. Figure 2

D4.2 Software adaptation-UCL-v0.7 Page 70 of 72

MAPPER – 261507

plots the percentage of users reporting satisfaction with a tool alongside the percentage of

users who successfully used that tool. Curiously, more users reported satisfaction with the

UNICORE client than were able to use it successfully, suggesting that many participants did

not realize their jobs had not completed successfully.

The freeform comments made by users of the individual systems also provide some

illuminating insights as to their usability. Regarding the use of ACD security with AHE, one

participant reported "To deal with security issues a user is much more at ease with a simple

username/password system. The use of certificates just complicates the process

unnecessarily". Another participant highlighted the problems involved in learning the

command line parameters required to use the Globus Toolkit, reporting "there were

difficulties in accessing the outside servers i.e. adding gsiftp:// or when to input the whole

path into the command line".

7 References

1. JSDL - Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen McGough,

Darren Pulsipher, Andreas Savva: Job Submission Description Language (JSDL)

Specification, Version 1.0, http://www.gridforum.org/documents/GFD.56.pdf, 2005.

2. HPC-BasicProfile - Blair Dillaway, Marty Humphrey, Chris Smith, Marvin Theimer,

Glenn Wasson: HPC Basic Profile, Version 1.0,

http://www.ogf.org/documents/GFD.114.pdf, 2007.

3. K. Rycerz, M. Nowak, P. Pierzchala, M. Bubak, E. Ciepiela and D. Harezlak:

Comparision of Cloud and Local HPC approach for MUSCLE-based Multiscale

Simulations. In Proceedings of The Seventh IEEE International Conference on e-

Science Workshops, Stockholm, Sweden, 5-8 December 2011. IEEE Computer

Society, Washington, DC, USA, 81-88 (2011).

4. I. Foster,A. Grimshaw,P. Lane,W. Lee,M. Morgan,S. Newhouse,S. Pickles,D.

Pulsipher,C. Smith,M. Theimer: OGSA Basic Execution Service, Version 1.0,

http://www.ogf.org/documents/GFD.108.pdf, 2008

5. Goodale, T. and Jha, S. and Kaiser, H. and Kielmann, T. and Kleijer, P. and Von

Laszewski, G. and Lee, C. and Merzky, A. and Rajic, H. and Shalf, J.: SAGA: A

Simple API for Grid Applications. High-level application programming on the Grid.

Computational Methods in Science and Technology

6. Fredrik Hedman, Morris Riedel, Phillip Mucci, Gilbert Netzer, Ali Gholami, M.

Shahbaz Memon, A. Shiraz Memon, Zeeshan Ali Shah: Benchmarking of Integrated

OGSA-BES with the Grid Middleware. Euro-Par Workshops 2008.

D4.2 Software adaptation-UCL-v0.7 Page 71 of 72

http://www.gridforum.org/documents/GFD.56.pdf,

MAPPER – 261507

7. John Brooke Usability evaluation in industry, SUS—a quick and dirty usability scale

(CRC Press, Boca Raton, FL), pp 189–194 (1996).

8. Chang, D.W.; Zasada, S.J.; Coveney P.V.: The Application Hosting Environment 3.0:

Simplifying Biomedical Simulations using RESTful Web Services, CBMS 2012 (in

press).

9. Groen, D.; Rieder, S.; Grosso, P.; De Laat, C.; Portegies Zwart, S.: A lightweight

communication library for distributed computing. Computational Science and

Discovery, vol. 3, no. 015002 (2010).

D4.2 Software adaptation-UCL-v0.7 Page 72 of 72

