
 MAPPER - 261507 - FP7/2007-2013

Project acronym: MAPPER

Project full title: Multiscale Applications on European e-Infrastructures.

Grant agreement no.: 261507

D 8.3 Second prototype with demonstration

Due-Date: 30 september

Delivery:

Lead Partner: Cyfronet

Dissemination Level: Public

Status:

Approved: Q Board, Project Steering

Group

Version: 1.1

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 2 of 34

DOCUMENT INFO

Data and version number Author Comments

06.07.2012 v0.1 Katarzyna Rycerz Plan of the document

24.07.2012 v0.2 Katarzyna Rycerz
General overview; Draft of

evaluation of efficiency

14.08.2012 v0.3 Tomasz Gubala
Added parts concerning

MaMe

05.09.2012 v0.4

Grzegorz Dyk

Sections: GridSpace

connection with AHE and

QCG clients, Provenance

06.09.2012 v0.5

Katarzyna Rycerz

Sections about GridSpace

Experiment Workbench and

Execution Engine

06.09.2012 v0.6

Alexandru Mizeranschi SBML toolbox section

06.09.2012 v0.7 Joris Borgdorff
Sections about the jMML

library

06.08.2012 v0.8 Daniel Harezlak sections about MAD

07.08.2012 v0.9 Katarzyna Rycerz
Minor corrections,

formatting

10.09.2012 v 1.0 Katarzyna Rycerz
Minor corrections,

formatting

18.09.2012 v 1.1 Katarzyna Rycerz
Corrections after project

internal review.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 3 of 34

TABLE OF CONTENTS

1 Executive summary ... 5

2 Contributors ... 5

3 Glossary of terms... 6

4 General architecture of the second prototype. ... 8

5 Value added since first prototype ... 9

5.1 User Interfaces and visual tools ... 9

5.1.1 Changes to MML and jMML Library .. 9

5.1.2 Multiscale Application Designer (MAD)... 9

5.1.3 GridSpace Experiment Workbench and Result browsing11

5.2 Programming tools ..13

5.2.1 MaMe: MAPPER Memory and xMML Repository ...13

5.2.2 The SBML toolbox ...16

5.3 Execution Tools ..18

5.3.1 Execution Engine Second Prototype ...18

5.3.2 Connection with QCG Client Second Prototype ...20

5.3.3 Connection with AHE client second prototype ...21

5.3.4 Browsing Results of MAPPER Applications ...22

5.4 MAPPER Provenance data collector and storage ...23

6 Prototype availability ...25

6.1 jMML library ..25

6.2 MAD ..25

6.3 GridSpace Experiment Tools ..25

6.4 MaMe ..27

6.5 SBML toolbox ...27

6.6 Provenance System ..27

7 Evaluation of efficiency of WP8 tools ..28

8 Conclusions ..32

9 References ...33

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 4 of 34

LIST OF FIGURES

Fig. 1. Architecture of the second prototype of the programming and execution tools in the context of the

full design presented in D8.1. .. 8

Fig. 2. A snapshot of the current implementation of MAD showing sample multiscale application

composed from single scale submodules. ... 10

Fig. 3. A single scale model presented by MaMe Model Registry. .. 14

Fig. 4. Any element of MAPPER application (scale model, a mapper or a filter) may have its

implementations registered in MaMe. Scale models and mappers may have ports, which are the

means of putting together complex applications into a single workflow processing. 14

Fig. 5. Main view of the Experiment (xMML) Repository part of MaMe showing the list of recorded

experiment (application) descriptions, each being an xMML document in the specific version of this

notation, with the list of application's elements and their interconnections. .. 15

Fig. 6. Class diagram of MultiGrain .. 17

Fig. 7. The current provenance architecture. ... 23

Fig. 8. Ontology used for describing provenance .. 24

Fig. 9. Process of constructing multiscale application - the steps of the process are indicated as rectangles;

supporting tools are indicated as circles. The following colours were used: MML support - orange,

tools - blue, external services - green.. 28

Fig. 10. Sample user answers to the SUS questions during first seasonal MAPPER school. 32

LIST OF TABLES

Tab. 1. Registered interpreters in GridSpace Execution Engine .. 20

Tab. 2. Availability of GridSpace software modules .. 25

Tab. 3. Multiscale application creation steps. For every step, we describe if and how it can be supported

by the tools instead of a user manual work. .. 29

Tab. 4. Status of using WP8 tools in MAPPER applications ... 30

file:///C:\Users\admin\Documents\alfons\d8.3\d8.3-secondprototype-cyf-v1.1.doc%23_Toc335749586

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 5 of 34

1 Executive summary

This document describes the functionalities and possible access to demonstrations for the

multiscale programming and execution tools in the MAPPER project. More specifically, D8.3

is the second prototype of the tools facilitating creation and execution of multiscale

applications with structure described in Multiscale Modelling Language. The presented tools

support composition of multiscale applications from existing single scale submodules

installed on e-infrastructures. After being composed, such applications are executed. The

second prototype contains improved programming and execution tools which includes: the

application composition tool called Multiscale Application Designer (MAD), Registry for

application modules description implemented as MAPPER Memory (MaMe), tools supporting

high level stage of execution: GridSpace (GS) Experiment Workbench (EW) and GS

Execution Engine. As planned in D8.1 and D8.2, we have also present prototypes of new

tools: xMML Repository, Provenance and Result Management. Additionally, we also present

a status of the integration of GridSpace Execution Engine with AHE interoperability layer on

the API level.

We present architecture of the current implementation, the detailed description of the

presented tools, their current functionality, list of changes from the first prototype described in

D8.2 and links to the prototype, code repository and/or demo film.

The document is organized as follows: In Section 4 we briefly describe architecture of the

prototype and its relation to design in D8.1 and status presented in D8.2. The detailed

information about each tool prototype can be found in Section 5. In Section 6 we list links to

prototypes, code repositories and/or demonstration videos. Section 7 outlines current

evaluation of efficiency of WP8 tools. We conclude in Section 8. The status of the actual

MAPPER applications and their preliminary usage of the tools can be found in D7.2.

2 Contributors

Below we list the institutions and names of the contributors. Their exact role in this

deliverable is depicted in the document info table at the beginning of the document.

Cyfronet: K. Rycerz, G. Dyk, T. Gubała, D. Harężlak, E. Ciepiela, M. Bubak

PSNC: M. Mamoński ,T. Piontek

UvA: Joris Borgdorff

UU: Alexandru Mizeranschi

UCL: Stefan Zasada

UNIGE: M.Ben Belgacem

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 6 of 34

3 Glossary of terms

In this document we will use terminology listed below. Additional glossary of terminology can

be also found in Section 3 of D 8.1.

Application Hosting Environment (AHE): a framework supporting running applications on

Grid infrastructures hosting Globus, UNICORE, QCG-Computing or GridSAM middleware.

Car-Parrinello Molecular Dynamics (CPMD): package containing a parallelized plane wave

/ pseudopotential implementation of Density Functional Theory, particularly designed for ab-

initio molecular dynamics.

CxA: Ruby-based file format that describes a MUSCLE application: (1) modules parameters

(2) couplings between modules.

Executor: a common entity for hosts, clusters, grid brokers etc. It's anything that is capable

of running software which is already installed on it (represented as Interpreters).

Experiment host: host where GridSpace experiment is executed.

Filter: in MML terminology one-to-one type of connection between submodels.

gMML: see MML.

GUI: Graphical User Interface.

jMML : java library supporting MML.

GridSpace experiment: set of snippets in various script languages stored in XML file.

Interpreter: a software package accessible from any script language available on any

infrastructure accessible by MAPPER community. An example of interpreter can be

MUSCLE (See D 8.1) or LAMMPS1 tools. We assume that the software is installed in WP4.

JobProfile: see QCG JobProfile.

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS): package

supporting classical molecular dynamics simulations.

Loosely coupled and tightly coupled: a collection of submodels instances is loosely

coupled if there is no cycle between them in the coupling topology, and tightly coupled

otherwise.

Mapper: in MML terminology mapper is one-to-many type of connection between single

scale submodels. Note the difference between mappers and the MAPPER project.

MAPPER memory (MaMe): semantics-aware persistence store for MAPPER metadata

based on xMML description.

Multiscale Application Designer (MAD): MAPPER application composition tool.

Metadata: data about data (e.g. link to actual file, but not file itself).

Multiscale model: the model of a multiscale process.

1
 http://lammps.sandia.gov/

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 7 of 34

Multiscale Modelling Language (MML): the high level concept of the language that

describes single scale submodels and their connections. The connection can be realized by

mappers (one-to-many type of connection) or filters (one-to-one type of connection with data

filtering). It is a concept for modelers and has several representations. The one described in

this document are xMML and gMML:

 xMML: the XML representation of MML that contains all information about application

structure. The latest version of xMML specification can be found on

http://napoli.science.uva.nl/xmml/xmml.tar.gz.

 gMML - the graphical representation of MML that contains only part of information

about application structure, useful for modellers and application developers.

Multiscale Coupling Library and Environment (MUSCLE): a communication library that

can be used to connect modules implementing single scale models into a multiscale

simulation. The structure of the application is described in CxA file.

Submodel (Single scale model): a model of a single scale process. In the context of a

multiscale model, a submodel.

Snippet: a piece of code in a script language.

Synchronization points: points during execution that one submodel instance will need to

synchronize with another (including itself), by requiring input.

System Biology Markup Language (SBML): XML-based language for representing

models. It's oriented towards describing systems where biological entities are involved in,

and modified by, processes that occur over time.

QosCosGrid (QCG): a resource and task management system aiming to provide

supercomputer-like performance and structure to cross-cluster large-scale computations that

need guaranteed level of Quality of Service (QoS).

QCG JobProfile: XML-based language describing how to execute an application using QCG

middleware.

Repository: place where multiscale applications' description files are stored and managed

(e.g. xMML files).

Registry: place where information (metadata) about some entities (in our case simulation

modules) are registered (but modules themselves are not stored!).

Task graph: an acyclic directed graph representation of the submodel instances and their

synchronization points as they unfold over time. It may include each of the operators of the

SEL as nodes.

User Interface machine (UI): machine accessible directly (via ssh) by a user from which he

can access other (Grid, PBS) resources.

xMML: see MML.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 8 of 34

4 General architecture of the second prototype.

The general architecture of the second prototype is shown in the Fig. 1, which is enhanced

version of the architecture presented in D8.1 and D8.2 according to evolving user

requirements.

Fig. 1. Architecture of the second prototype of the programming and execution tools in the context of the

full design presented in D8.1.

The second prototype contains improved version of the multiscale programming and

execution tools presented in D8.2. This includes: Multiscale Application Designer (MAD),

Modules Registry implemented as Mapper Memory (MaMe), GridSpace (GS) Experiment

Workbench and GS Execution Engine with its Interpreters Registry. As planned, we have

also present prototypes of new tools: xMML Repository, Provenance and Result

Management. xMML repository stores xMMLs of applications and provides them to MAD for

reusability. Result Management is a realized as a part of Provenance system that is able to

save snapshots of experiment results together with their metadata. Therefore a user is able

to view experiments results and their metadata using Provenance Interface. Apart from

improving integration with of GridSpace Execution Engine with QCG-Broker, we also

implemented integration with AHE interoperability layer on the API level.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 9 of 34

We will subsequently improve the presented prototype by improving modules according to

evolving user requirements.

Next chapters present the detailed description of the presented tools, contain architecture of

the current implementation, its current functionality, list of changes from the first prototype

described in D8.2 and links to the prototype, code repository and/or demo film.

5 Value added since first prototype

5.1 User Interfaces and visual tools

5.1.1 Changes to MML and jMML Library

The jMML library is a Java library that handles Multiscale Modeling Language (MML)

[BORGDORFFa]. The first prototype of jMML is described in detail in Subsection 5.1.1

of D8.2. The MML specification is described in detail in Subsection 4.2 of D8.1 and has few

changes. The major difference is the addition of a new computational element called a

terminal. A terminal can directly terminate a conduit. There are two types of terminal: a

source and a sink. A sink will read any data that comes over a conduit and a source will

generate any data. Natural sources and sinks that come to mind are file readers and writers,

so that messages received over a conduit are actually the contents of files.

In addition to what was decribed in Subsection 5.1.1 in D8.2, the jMML library can now

output a MUSCLE configuration file for a given xMML file. It can also generate a directory

structure with preliminary code and base code already filled in based on the xMML file.

5.1.2 Multiscale Application Designer (MAD)

Multiscale Application Designer (MAD) is a graphical tool enabling easy multiscale

application composition out of individual components of the MML language. The tool is

available to users through a web browser and uses convenient drag-and-drop techniques to

build applications. Since the first prototype was published and described in deliverable D8.2

in section 5.1.2 a number of changes were implemented in the second prototype. The most

important ones include user interface changes, xMML repository usage and implementation

of a flexible module management mechanism. The changes are described in detail below.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 10 of 34

Fig. 2. A snapshot of the current implementation of MAD showing sample multiscale application

composed from single scale submodules.

GUI enhancements

The second prototype of MAD is presented in Fig. 1. The bottom part of the interface is now

occupied by a property editor which allows to change properties (including simulation

parameters) of MML components. The tabs of the editor correspond to individual nodes in

the workspace area, unless a tightly-coupled section is present in which case a single tab

combines the section components' properties. The editor fills in the property forms with

default values coming from the MaMe registry. If present, different MML component

implementations can be chosen in the property editor. Another feature of the property editor

is handling of global parameters which are defined in MaMe in an MML component

namespace. This may introduce conflicts if the same global property is imported by a few

components. Such cases are discovered and a proper warning is produced. The user may

pick a global parameter value of one of the conflicting components or specify a new one.

When an application is saved all changes applied in the editor are saved and restored when

the application is being imported into MAD.

xMML repository

As described in the Subsection 5.2.1 an xMML repository was made available and allows for

storing and retrieving of multiscale applications written in the xMML format. MAD utilizes this

by providing xMML repository widgets. This allows users to compose their applications and

afterwards save and share them with other users. Stored applications are annotated by a

name and a short description. If an application with the same name is saved the old one is

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 11 of 34

overwritten by putting it into the archive for later recovery. Saved applications cannot be

removed directly from MAD but it is possible to be done through MaMe by providing valid

credentials.

Module management

First prototype of MAD generated an executable form of tightly-coupled sections by using

(among others) low-level properties which were specific for an execution environment

(infrastructure site) and were defined in MaMe. This posed interoperability problems on the

modeling level. Additionally, the feature of executing particular parts of tightly-coupled

sections on different execution sites brought extra difficulties in generating proper mapping

descriptions. In the second prototype mapping between parts of tightly-coupled sections and

execution sites was moved to GridSpace Experiment Workbench (EW) which enabled the

modeling layer to operate on abstracted dependencies. This however required the EW

experiment generation process to be modified. The modification is in place and passes

correspondences between MML components belonging to a tightly-coupled section and

abstract module names. This enables different mapping strategies to be implemented in EW

in order to optimally use the available infrastructure and keeping the application descriptions

abstract.

5.1.3 GridSpace Experiment Workbench and Result browsing

Since previous release of the first prototype, which was thoroughly described in Section 5.1.3

of D8.2, a considerable effort has been devoted to further development of GridSpace

platform in order to embrace requirements and characteristics of multiscale applications. In

particular, GridSpace Experiment Workbench (EW) being a web-based user interface to the

platform has been refactored and enriched in order to better support scientific application

developers in composing and running multiscale, distributed, cross-site and time-consuming

applications.

Support for long-running experiments.

One of the major deficiencies of Experiment Workbench in the first prototype was lack of

proper handling of long-running experiment. EW didn’t give means to run experiments in an

unattended way so the users had to be logged into EW during all experiment run time,

keeping the session with EW open for long time. In the second prototype EW handles

experiment execution on the server side thus allowing user to log out from EW and re-log

again anytime later to see the status of the execution that is carried out continuously “in

background”. Technically speaking, it was achieved by decoupling user sessions with EW

server from underlying execution service that can operate without user being logged in.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 12 of 34

When a user logs out form EW, all his or her experiment executions are being detached from

user session and kept “parked” on the server side, what happens without interrupting the

computations, until a user re-log again. Then, experiment executions are brought back form

server-side “parking” and reattached to a user’s session. In consequence, user’s workbench

became persistent in a way that one can log in and log out at any time, and even when

session expires the state of workbench is persisted on the server side and can be retrieved

when user re-log in again. Moreover, users are notified when the session expiration time is

about to be reached and asked if the session has to be prolonged.

Improved URL handling.

Following up improvements aimed at supporting long-running experiments, the URL handling

mechanism has been reworked in order to enable preserving EW user interface state. Now,

URL encodes the state of the user interface, thus subsequent references to a given URL

retrieve EW user interface in exactly the same state. That enables users to save user

interface state of their interest as an URL and retrieve it any time by navigating to that URL.

What is more, the web browser history management is now better supported as “back” and

“refresh” buttons work as web browser users got used to.

One click opening of MAD-generated experiments.

EW now can open experiments generated by external applications, most notably Multiscale

Application Designer (MAD), using dedicated HTTP endpoint (/workbench/open). Making

HTTP POST request to such URL results in opening the experiment provided as a content of

the request. If user is not yet authenticated the login form is displayed. After successful

authentication EW is opened with the experiment that has been passed from external

application. Owing to this feature, MAD can now offer one click way to redirect to EW and

open the experiment generated on the fly by MAD.

Login with proxy certificate generated on the fly.

Since some executors such as AHE and QCG use grid proxy certificates for authentication

and authorization purposes, a new way of logging is now enabled in EW. Users are no longer

required to generate proxy on their own, manually or using specific tools. Instead, EW login

form can accept a pair of grid certificate and corresponding certificate key and generate

proxy certificate on the fly within web browser using dedicated built-in applet. This way,

users’ sensitive personal credentials are not being sent outside their computers: proxy is

generated within their web browsers and after that used by EW for authentication and

authorization.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 13 of 34

Pluggable openers for visualizing and editing data files.

In order to deliver capabilities of visualization and editing of complex data files the idea of, so

called, openers has been introduced. Opener is a web application powered by as e.g. applet,

javascript, flash, or any other rich internet application technology. Openers are served by EW

and run within users’ web browsers sharing the same secured web session with EW.

Openers are pluggable and can be added to EW anytime by its provider. Owing to this,

openers can be developed and delivered independently. In particular, already existing web-

based tools can be reused and adopted to fit in EW architecture. Openers interoperate with

EW using its REST interface dedicated for openers: each data file stored on an executor is

assigned with HTTP URL and can be fetched and saved using HTTP GET and PUT

requests, respectively. Openers are then enabled to GET data file in a given supported file

format and deal with it in its own specific way e.g. visualize or open for edition. Modified file

can be then PUT back on the servers and stored in its original location.

5.2 Programming tools

5.2.1 MaMe: MAPPER Memory and xMML Repository

Mapper Memory (MaMe) is a core element of Mapper multiscale applications toolbox. It

serves as a persistence layer and a domain-aware registry for metadata regarding structure,

implementation and execution of multiscale applications on computational infrastructure. As

described by Section 8.2 of D8.1, MaMe stores information on scale modules, mappers and

filters, together with their ports, implementations and other constituting elements and

attributes.

The first prototype of MaMe was described in Section 5.2 of D8.2. This section of the

document is intended to provide the description of the progress made in the design and

development of this component. The most important addition is the entirely new xMML

application description repository. Also, in the models registry, part of MaMe, there were

some additions and developments made. The following subsections describe them in detail.

Changes in Models Registry

In comparison to the description of the first prototype of the Model Registry of MaMe (Section

5.2.1.1 of D8.2), there were only minor changes made - mainly in order to get a better user

experience and smoother workflow across the user interface.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 14 of 34

Fig. 3. A single scale model presented by MaMe Model Registry.

As presented in Fig. 3, due to growth of the number of stored models and mappers, the

element list was made more concise. Only the most general metadata is being loaded right

away when browsing the list of available models, mappers and filters. Any following

information and dialog boxes (ports, implementations) are loaded on-demand with AJAX

asynchronous calls. The user may get full information on a given multiscale application

element by loading additional information with a click (see Fig. 4).

Fig. 4. Any element of MAPPER application (scale model, a mapper or a filter) may have its

implementations registered in MaMe. Scale models and mappers may have ports, which are the means of

putting together complex applications into a single workflow processing.

Further changes to the user interface of the Models Registry concern finer-grained

interaction model. Now the administrator of MAPPER infrastructure or the developers of

application modules are able to add and remove not only the models, their ports and their

implementations, but also scales and the specific parameters of these implementations. Also,

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 15 of 34

any element might be modified in-situ, so no longer the "remove-and-reregister" procedure is

forced upon the user of MaMe.

New xMML Repository

As stated by Section 5.2.1.2 of D8.2 the previous (initial) version of the xMML Repository of

multiscale application descriptions was very rudimentary. Afterwards it was completely

rewritten to provide better usage experience for users and developers of other MAPPER

tools, according to the design (Section 8.2.1 of D8.1). Currently the Repository (also referred

to as Experiment Repository) constitutes another important building block of MaMe.

Fig. 5. Main view of the Experiment (xMML) Repository part of MaMe showing the list of recorded

experiment (application) descriptions, each being an xMML document in the specific version of this

notation, with the list of application's elements and their interconnections.

As presented in Fig. 5, the Experiment Repository holds descriptions of multiscale

applications. These description may be written by the users by hand but the preferred and

better method of planning applications is to use the MAD tool to design a new multiscale

application in a user-friendly way. MAD is able both to load saved xMML description and to

save the new ones using this repository.

In order to provide the method of removing unnecessary, older versions of experiments, the

experiment archive is being provided - removing any xMML experiment description from

MaMe will move it to the archive (instead of deleting it completely). Such archived

experiments do not clutter MaMe and MAD displays but are easy to retrieve back with the

use of Reload from Archive capability of MaMe.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 16 of 34

In order to accommodate MAD and similar tool using MaMe internally, a HTTP/REST

interface was developed for the Experiment Repository. Currently it contains three

operations:

 experiments_list - returns the full list of available (i.e., not archived) experiments and

their metadata, in JSON format,

 experiment_content - returns the full xMML document for a specific experiment saved

in MaMe,

 save_experiment - performs an "upsert" operation on a given experiment: that is it

saves it when no such experiment existed or it updates its content, if it had been

already recorded by MaMe in the past.

The capability of being able to parse ready xMML description in order to retrieve and

automatically register all models, mappers and filters mentioned there, as described by

Section 5.2.1.2 of D8.2, was preserved and is still available in the current version of MaMe.

5.2.2 The SBML toolbox

Compared to the status described in the Subsection 5.2.2 of D8.2 deliverable, the SBML2

toolbox was improved in Year 2 of the MAPPER project in a number of ways:

 The previous ordinary differential equation (ODE) solver (XPPAUT3 , Ermentrout,

2002) has been replaced with a native Java library, resulting in increased

performance (reduced computation times),

 SBML models can now be automatically created for a given number of genes and for

a given rate law,

 A larger number of ODE-based rate laws is supported,

 A component to visualize the GRN models represented in the SBML format has been

added.

As previously described in deliverable D8.2, the SBML toolbox has been developed as a set

of Java classes and tools, used by the MAPPER Computational Biology application which we

named MultiGrain (“Multiscale Gene Regulation Modelling Tool”). Based on the

developments in Year 1 of the MAPPER project, we have redesigned some aspects of our

Java-based gene regulatory network (GRN) modelling and simulation tool, in order to match

our current needs. These changes are described in deliverable D 7.2, while here we focus on

2
 The systems biology markup language: http://sbml.org

3
 XPPAUT, a tool for solving stochastic, differential, and difference equations:

http://www.math.pitt.edu/~bard/xpp/xpp.html

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 17 of 34

the SBML toolbox exclusively. Figure 1 shows the class diagram representing the current

status of the application.

A first important change was replacing XPPAUT with Michael Thomas Flanagan’s Java

scientific library4. Since our GRN tool is also implemented in Java, this resulted in a

considerably increased performance, due to the fact that ODE solving is an important step in

simulating our SBML models of GRNs. The class structure was also changed to enable this,

eliminating the previous Xppaut class and adding others such as:

 GRNModel, containing information about the GRN model which is being reverse-

engineered

 DifferentialEquation, an abstract class containing general information

 DifferentialEquationSystem, aggregating

 A class implementing the DifferentialEquation class for every type of rate law

supported.

Fig. 6. Class diagram of MultiGrain

Second, we decided to add support for generating SBML models from within our toolbox,

requiring the user only to provide the number of genes in the GRN and to choose a rate law.

In contrast, the user was previously required to provide an SBML file created in an external

tool such as COPASI [HOOPS] or CellDesigner [FUNANHASHI]. In this way, we are able to

enforce a common naming system for the different parameters that appear in our equations,

simplifying the process of adding (implementing) new methods.

4
 Michael Thomas Flanagan’s scientific library: http://www.ee.ucl.ac.uk/~mflanaga/java/

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 18 of 34

After initially focusing on only one type of rate law (the Artificial neural network introduced by

[VOHRADSKI], we added support for four additional types of ODEs used in systems biology

literature: the S-system method [SAVAGEAU], the generalized rate law of transcription

method [MENDES], the Hill equation and the generalized mass action model [VOIT]. For

each rate law, we created a Java class extending the abstract class DifferentialEquation,

containing a method which generates the ODE when needed by the ODE solver.

Finally, we added support for visualizing GRN models as graphs. We created the

GraphRepresentation class for this, using the Java Jgraph library5 for the implementation.

Our aim is to also implement a means for comparing two GRNs based on their structure

similarity. A score will be given to represent how similar a graph is to another, useful for

example for knowing how well a reverse-engineered model matches the structure of a real

GRN, in cases when this structure is known beforehand.

We are now in the course of preparing and running scientific experiments employing the

MultiGrain tool. As a result of this, we will present a practical, scientific use of the SBML

toolbox as part of a concrete systems biology tool. Also, due to the modular, fine-grained

nature of our components we expect them to be easily reused into other similar projects.

5.3 Execution Tools

5.3.1 Execution Engine Second Prototype

GridSpace Execution Engine constitutes a back-end facility for submission of experiments

developed and run through GridSpace Experiment Workbench (EW) described in Subsection

5.1.3 of this document. In order to support functionality offered by EW and other MAPPER

tools in the second prototype the following functionality has been added since the first

prototype release of Execution Engine.

Support for long-lasting connections with executors.

Implication of the requirement of supporting long-running experiments (explained in [4.1.3])

was ensuring long-lasting connections with executors that rely on connection-oriented

protocols (e.g. SSH, GridFTP). For this purpose Execution Engine periodically triggers

dedicated “keep alive” call against all connected executors. Depending on concrete

implementation of an executor, keep alive call may be implemented in various, executor-

specific ways. This call must be handled by the executors who are to perform all necessary

activities in order to avoid session expiration and check connectivity with external systems

the executor relies on, if any.

5
 The JGraph library: http://www.jgraph.com/

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 19 of 34

Isolated executor client modules.

Since Execution Engine is intended to embrace unrestricted range of executors the

mismatches and software conflicts between executor client modules were expected to occur

and indeed have happened. AHE and QCG client modules proved incompatible with each

other what has been remedied by introducing isolation between executor client modules

enabled by Java class loader mechanism. Using different class loaders per individual

executor, the isolation between executor classes has been achieved. Executors share only

the minimum amount of classes that are loaded by Execution Engine, while the rest is loaded

by the executors independently using isolated and separated class loaders. That avoids

name conflicts of in Java classes induced by version conflicts of modules that multiple

executors depend on. Such low-level isolation puts robust foundation that strengthens

extendability of EE in terms of a quantity of executors that can coexist in single Execution

Engine instance.

Compound assets.

As it was encountered in the cases of some multiscale application modules, they may use

not only single input and output files but whole directories with a given layout as well.

Therefore, GridSpace experiments had to support directories as their input/output assets.

First, application developers have been enabled to specify a path to an input/output directory

using terminating slash character. In this case, EW deals with such-defined input/output as

with a directory. Second, it can be specified that a given directory is a compound of a set of

given single input/output files. Copying single files to and from compound assets is handled

transparently by EW.

Parameterized interpreter arguments.

After the first prototype of Execution Engine it was found that when using scientific software

packages (configured as interpreters in GridSpace) on different computing sites (configured

as executors in GridSpace) some interpreter- or executor-specific parameters have to be set

when submitting computations. For example, a queue name in the PBS batch system where

to submit jobs is an executor-specific parameter, specific to a given computing site.

Configuration file of a given scientific software package is an interpreter-specific parameter

that needs to be provided on whatever site this software is to be run. For this purpose, EE

allows for specification of a program invocation command that contains interpreter- and

executor-specific parameters to be provided in the experiment and experiment execution

descriptor, respectively.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 20 of 34

New resources configured in interpreters registry.

Working on porting Mapper multiscale application portfolio to the Mapper framework, new

interpreters have been registered prior to the release of the second prototype. Interpreters

were indicated by the depending applications, installed on indicated sites and e-

infrastructures and then registered as indicated in Tab. 1.

Tab. 1. Registered interpreters in GridSpace Execution Engine

Interpreter Id Used by application Available on executors

CPMD-3.13-2 Nano AHE, Mavrino site, Zeus site

CPMD2CUBE-3.13-2 Nano Mavrino site

MSI2LMP_POT-30Sep11 Nano Mavrino site

LAMMPS-30Sep11 Nano AHE, Mavrino site, Zeus site

CanalVisualizer-1.0 Canals Zeus site, Grass1 site

Mencoder-4.1.2 Canals Zeus site, Grass1 site

Helena Fusion Zeus site

Ilsa Fusion Zeus site

5.3.2 Connection with QCG Client Second Prototype

The first prototype of the integration between GridSpace and QCG was already described in

Subsection 5.3.3 of D8.2. It supported the execution of example Multiscale applications. The

second prototype: (1) improves stability and reliability, (2) increases the flexibility of the

solution to enable execution of more varied multiscale applications.

Regarding stability and reliability the integration tests that were set up for the first prototype

helped to detect a number of problems and errors. Most of them concerned the usage of

GridFTP protocol for file staging in and out.

Running a generic MUSCLE-based application with QCG

The first prototype of QCG integration with GridSpace allowed to run example mutli-scale

applications. However, it still lacked ability to support completely new, composed ad-hoc

application (for example using MAD). This issue was caused by the fact that not all machines

within QCG infrastructure had all required kernel implementations installed. In other words,

the executing infrastructure should be aware of all dependencies that are required by each

module and on which sites they can be resolved.

For example, a multiscale application may require kernels A,B and C. There are kernels A

and B installed on machine X and kernel C installed on machine Y. Therefore, kernels A and

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 21 of 34

B can be run on machine X and kernel C on machine Y. However, infrastructure has to be

aware what kernels are required by the application and where they are available.

Following improvements were made to solve aforementioned problem:

 in MaMe dependencies are only abstract module names instead of full paths to jars,

 MAD does not add the dependencies listed in MaMe registry to CxA scripts. Instead,

they are passed as interpreter parameters to experiment,

 using list of dependencies for each kernel passed in interpreter parameters in

experiment file EW constructs a proper job profile for QCG that has these

dependencies listed. One should note that at this point dependencies are still seen as

abstract names. Moreover, EW does not have to write the machine addresses that

should be used for execution. These will be resolved by QCG (see next point),

 QCG broker accepts a job profile, reads required dependencies for each kernel and

refers to its internal registry to decide which sites will meet the requirements.

Detailed technical description of GridSpace-QCG integration can be found in Annex A of

D5.2 (living document update in M24).

5.3.3 Connection with AHE client second prototype

The connection of GridSpace with AHE was described in section 5.6.3 of D 4.2 (M18) of the

project. Since then, the following improvements have been made:

 working execute operation, allowing for users to run code snippets with GridSpace

web interface using AHE infrastructure,

 the execution process can be interrupted by user. In such case he or she can start

another execution on AHE infrastructure,

 interpreters that are relevant for running sample multiscale applications have been

configured, in particular the LAMMPS and CPMD tools installed on AHE machines

are available through GridSpace .

In order to validate prepared integration mechanisms, especially the execute operation, we

prepared integration tests for the AHE Executor. They invoke simple tasks on working AHE

infrastructure, check whether they were successful and compare the actual output with

expected one. Three main scenarios are taken into account:

 a task that writes only to standard output (not output files and therefore not staging

in/out is required),

 a task that writes to a file - checks task execution and tests file stage out,

 a task that reads from a file and writes to another - as previous one but also checks

staging in.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 22 of 34

The tests are run periodically. Developers are immediately informed about any failures by

email.

5.3.4 Browsing Results of MAPPER Applications

In MAPPER, result management is done in three aspects:

 storing, reading and browsing the actual file that was created as a result of

experiment execution

 storing metadata that describes the experiment outputs

 browsing results and searching using associated metadata

As described in Section 8.1.2 of D8.1 two first areas were already partially supported by the

first prototype by GridSpace. Since then, the metadata and file handling has been improved

and more browsing capabilities where added. Below, we describe the changes in more

details.

Physical file handling is provided by file browser in GridSpace by giving access to files that

are present in a location related to specific experiment executor using SSH and GridFTP.

The improvements in this field are introduced by a new provenance tool. It is capable of

performing copies of experiment inputs and outputs and versioning them. This additional

persistence allows users to read experiment results even if they were changed or deleted on

original machine. The copying can be disabled for certain files (for example if they are too big

to be transfered over the network). Currently two protocols are used for transferring the files:

 SSH - in this case the GridSpace server works as a intermediary between the

executor storage and versioning storage. This is required because usually

establishing a direct SSH connection between machines by a third party is not

possible

 GridFTP - if the machine that runs the experiment supports this protocol, GridSpace

uses the third-party-copy feature and files are copied directly between source

machine and target.

Metadata handling. A new provenance system significantly expands the metadata that is

available for experiment results. It collects detailed information about each execution of a

GridSpace experiment, including what results (files) were created, when and by which

execution steps (snippets). It also has links to their copies (mentioned in previous

subsection) therefore it allows for easy searching and browsing. More details are available in

section Provenance.

Browsing. Basic result browsing was already provided by GridSpace and its file browser. It

enables browsing a typical directory-tree that is present on an infrastructure that runs the

experiment. More sophisticated browser is provided for provenance and it is called QUaTRO.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 23 of 34

It is a web-based application that allows a user to construct queries for RDF database

containing provenance. The results of such query may be, among others, copies of files

produced by experiment. Therefore, the provenance browser can be used as a experiment

results browser.

5.4 MAPPER Provenance data collector and storage

As described in D8.2 in Section 5.4 the provenance system provides the following

functionality:

 tracking - collecting metadata about experiment execution

 storing - providing a special database for holding metadata as well as creating

snapshots of experiment inputs and outputs

 browsing and querying collected data using convenient user interfaces

Fig. 7. The current provenance architecture.

The architecture of the provenance system is shown in Fig. 7. The Experiment Host is an

infrastructure that runs the experiment using input and output files (input and output assets).

The GridSpace machine hosts GridSpace Execution Engine described earlier in this

deliverable together with GridFTP server for accepting file transfers from experiment host

that are required to store and version experiment results. The provenance data can be

browsed by QUaTRO (provenance interface). the DataStore server keeps provenance-

related data, that is the metadata in RDF format and snapshots of experiment inputs and

outputs.

Compared to previous design, this architecture differs in following points:

 There is no separate event collector. It is embedded in GridSpace execution engine

and writes data directly to the database

 the MEF format concept was abandoned in favor of plain RDF graphs as it turned out

to be too restrictive

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 24 of 34

 The GridFTP server is physically on the same machine as the GridSpace execution

engine. This results from the fact that we needed the server to be installed on a

machine that is already trusted by other sites

As mentioned before the event collector has been embedded into the GridSpace execution

engine. It listens to the experiment execution process and at each step creates a provenance

entry compliant with an ontology tailored for describing provenance in GridSpace. Following

events are collected and written to a RDF database:

 experiment was started - contains date, experiment name and metadata

 snippet execution was started - contains date, experiment for which this snippet is

run, inputs of this snippet (snapshots are created) and snippet code

 snippet execution was canceled - same as above but creates snapshots of snippet

outputs instead of inputs. Additionally, the outputs are linked with the snippet that

they were created by

 experiment execution finished - contains date and reference to same experiment

metadata as the expriment start event

The ontology that is used for describing provenance is based on Open Provenance Model

Vocabulary (OPMV)6. Most important part of it is presented in Fig. 8. The grayed entities

come from the OPMV ontology. The black ones are the extension created for GridSpace.

Fig. 8. Ontology used for describing provenance

6
 http://open-biomed.sourceforge.net/opmv/ns.html

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 25 of 34

A system uses 4store RDF database for keeping provenance medatada and a SVN

repository for versioning input and output files of experiment steps (snapshots). Both

services are currently operational. Additionally, creating snapshots of scripts was added.

A QUaTRO browser, available in the first prototype, has also been slightly improved by

adding resource explorer.

6 Prototype availability

Below we present details concerning availability of prototypes of each tool.

6.1 jMML library

The XML Schema of MML is located at the public repository

https://github.com/blootsvoets/xmml and the jMML library is located at

https://github.com/blootsvoets/jmml.

6.2 MAD

The second prototype of MAD is available at https://gs2.mapper-project.eu/mad. The code is

managed by Maven and is available in an SVN repository at

https://gforge.cyfronet.pl/svn/gs2-utils/ibuilder. Access to the repository is possible to third-

parties by using anonymous account of username anonsvn and password anonsvn.

A movie presenting MAD can be used can be seen on

http://dice.cyfronet.pl/projects/details/Mapper.

6.3 GridSpace Experiment Tools

GridSpace in its second prototype consists of several fine-grained modules. Experiment

Workbench is a Java Enterprise Edition web application that comprises all the modules and

can be considered as fully stand-alone. Rest of the modules are Java libraries that depend

on each other. Each module source code resides in its separate SVN repository and is built

as Maven artifact and then stored in dedicated Maven repository as indicated

in Tab. 2.

Tab. 2. Availability of GridSpace software modules

GridSpace

Module Name

Description Source code access - SVN

URL

Distribution –

Maven artifact

Experiment

Workbench

Web-based user interface

for creating and running

GridSpace experiments

https://gforge.cyfronet.pl/svn

/gs2-utils/gs2portalproto/

http://dev-

gs.cyfronet.pl/m

vnrepo/cyfronet/

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 26 of 34

gs2/ew/

Core

(Execution

Engine)

Execution engine that

handles submission of

computational tasks in

distributed environment. It

uses executors in order to

access computational

power providers’ services.

https://gforge.cyfronet.pl/svn

/gs2-utils/cyfronet.gs2.core/

http://dev-

gs.cyfronet.pl/m

vnrepo/cyfronet/

gs2/core/

Executors Specification of interface

between Execution Engine

and computational power

providers.

https://gforge.cyfronet.pl/svn

/gs2-

utils/cyfronet.gs2.executors/

http://dev-

gs.cyfronet.pl/m

vnrepo/cyfronet/

gs2/executors/

Experiment Basic data structures and

object model of GridSpace

experiments.

https://gforge.cyfronet.pl/svn

/gs2-

utils/cyfronet.gs2.experimen

t/

http://dev-

gs.cyfronet.pl/m

vnrepo/cyfronet/

gs2/experiment/

Result

Management

based on

Provenance

GridSpace Provenance

subsystem.

https://gforge.cyfronet.pl/svn

/gs2-utils/provenance/

http://dev-

gs.cyfronet.pl/m

vnrepo/cyfronet/

gs2/provenance/

SSH Executor Basic, built-in executor

handling execution on sites

and single hosts reachable

through SSH protocol.

https://gforge.cyfronet.pl/svn

/gs2-utils/cyfronet.gs2.ssh-

executor/

http://dev-

gs.cyfronet.pl/m

vnrepo/cyfronet/

gs2/ssh-

executor/

SPI GridSpace Common

programming utilities.

https://gforge.cyfronet.pl/svn

/gs2-utils/cyfronet.gs2.spi/

http://dev-

gs.cyfronet.pl/m

vnrepo/cyfronet/

gs2/spi/

Installation of Experiment Workbench is continuously available at https://gs2.mapper-

project.eu/ew/ in its the most recent stable version. Associated interpreters registry is made

accessible for external tools (such as MAD) through REST endpoint: https://gs2.mapper-

project.eu/ew/gridspace. Experiment Workbench installation includes comprehensive

tutorials and user manual. A movie presenting EW working with other tools can be seen on

http://dice.cyfronet.pl/projects/details/Mapper.

https://gs2.mapper-project.eu/ew/
https://gs2.mapper-project.eu/ew/
https://gs2.mapper-project.eu/ew/gridspace
https://gs2.mapper-project.eu/ew/gridspace

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 27 of 34

6.4 MaMe

The current version of MaMe (both the Models Registry and the Experiment xMML

Repository) is permanently provided under the link http://gs2.mapper-project.eu/mame/

It has completely open read access to every interested party - so any multiscale application

developer or any scientist running such applications is able to read about available models

and experiments, developed within the MAPPER Consortium. The write access is, however,

blocked for such external people and only the members of the Project are presented with

appropriate credentials to be able to modify the contents of the registry.

The same rule applies to the REST API for other tools: the read operations are open and the

insert/delete/modify operations are secured. The exact explanations on how to use the REST

API and what operations are available that way is given in the help sections of the main

MaMe view (see the same MaMe public URL, given above).

The current revision of the MaMe source code is available at two distinct parts:

 https://gforge.cyfronet.pl/svn/sint/trunk/mame (the MaMe tool)

 https://gforge.cyfronet.pl/svn/sint/trunk/sintmodel_mapper (the semantic Mapper data

model).

This distinction is made in order to keep the tool design clear and properly decomposed. The

MaMe web application is being developed with the Semantic Integration methodology

[GUBALA] and the core part of this requires the domain model to be an explicit, external

element of the design (so the tool itself is kind of parametrized with the MAPPER domain

model, based mainly on the xMML notation).

6.5 SBML toolbox

The codes are available in the svn repository

https://apps.man.poznan.pl/svn/sbml-toolbox/GRNApplication/src/

6.6 Provenance System

The main tool for browsing provenance data and experiment results is available here:

https://gs2.cyfronet.pl/quatro/. A movie presenting how it can be used can be seen on

http://dice.cyfronet.pl/projects/details/Mapper.

Source codes are available in following locations

 https://gforge.cyfronet.pl/svn/gs2-utils/provenance/trunk/ - source code for

provenance event collector that is embedded in GridSpace

 https://gforge.cyfronet.pl/svn/quatro2/trunk/ - latest source code of the QUaTRO

browser

https://apps.man.poznan.pl/svn/sbml-toolbox/GRNApplication/src/

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 28 of 34

7 Evaluation of efficiency of WP8 tools

According to description of Task 8.5 in DoW we measure efficiency of the WP8 tools by

comparison of the effort of coupling applications by hand with the effort of coupling them

using the tools. The main steps required for constructing the multiscale application either

manually or using the tools are indicated in Fig. 9.

First, all submodels of single scale phenomena have to be created. These submodels have

to be appropriately described to be composed with each other to form the multiscale

application. Also, the corresponding software modules that implement submodels has to be

designed. Having created single scale models, as well as the required scale bridging

methods, they should be composed into the full multiscale applications. Firstly, this is done

on the conceptual level. Next, the connection scheme has to be described. Finally, the

application has to be executed on resources that fulfill requirements of all individual

components. After execution, the results have to be fetched and presented to the user. All

these steps can be done manually.

The WP8 tools support development of multiscale applications and facilitate their execution

in abovementioned the process. They facilitate visual joining of modules and automatic

generation of the connection scheme from this visual view. They provide sharing of modules

and descriptions of their connections and reusing modules in different configurations. Having

stored all required data, it is possible to automate the production of an executable from

created connection scheme and facilitate choosing required resources from the single entry

Fig. 9. Process of constructing multiscale application - the steps of the process are indicated as rectangles;

supporting tools are indicated as circles. The following colours were used: MML support - orange, tools -

blue, external services - green.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 29 of 34

point. After the execution, the output data are fetched and presented to the user. Moreover,

history and provenance of produced results are also provided to enable other scientists to

search, compare, evaluate and possibly validate results. In Tab. 3 we summarize actions

required to create and execute the multiscale applications as described above. For each of

the actions, we describe if and how it can be supported by the tools. For most cases, actions

are facilitated by providing interactive interface to the user. If the action can be fully

automated, we also provide the estimated time of the action.

Tab. 3. Multiscale application creation steps. For every step, we describe if and how it can be supported

by the tools instead of a user manual work.

Action Tools Support

conceptual modeling of

single scale phenomena

done by a user

description of single scale

models

for regular applications the description is registered to

MaMe by using interactive user interface

design and implementation of

single scale modules

done by a user; can be done using specyfic frameworks

such as MUSCLE

conceptual modeling

multiscale phenomena

done by a user

design of connection scheme

between singe scale modules

interactive visual design in MAD; the previously designed

connection schemes can also be loaded from xMML

repository (few milliseconds); automatic generation of

connection scheme (few milliseconds)

preparation of executable

application from connection

scheme

automatic generation of Experiment by MAD (few

milliseconds) - this assumes that implementation of single

scale modules are already available

mapping modules to

(possibly different) external

services that access e-

infrastructures; setting

parameters of these services

done by a user from the single web interface (GridSpace

EW)- interactive process that usually takes from a few

seconds to a few minutes.

execution of modules goal is to facilitate application run, not improve

performance -initialization of execution is done from a

single web interface by pressing the run button; for ssh

accessible resources there is a possibility of monitoring

standard error and output from GridSpace EW that

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 30 of 34

enables user on-line interaction with running modules;

convenient usage of features underlying services (QCG-

Broker, AHE)

fetching results automatically fetched and visible in GridSpace EW by

means of standard protocols - ssh and GridFTP (time

depends on data size and protocol performance)

viewing results visible in GridSpace EW; additionally QUaTRO browser

can search created copies of experiment results

viewing provenance results QUaTRO browsing and searching provenance data

The tools provide convenient initialization of execution, the possibility of monitoring standard

error and output as well as easy browsing of results. The tools themselves do not focus on

improving applications performance, but they facilitate usage of the underlying services (i.e.

QCG-Broker and AHE) that can also support this goal. Moreover, the performance of the

application is not affected by the tools usage as from the application point of view it is

executed on remote resources using standard ssh protocol and available service clients (for

QCG-Broker see section 5.3.2 and for AHE executor see Section 5.3.3). The tools are

transparent for application execution.

To measure tools efficiency we have used metrics defined in DoW:

 user experience with new MAPPER tools measured by feedback forms: During

the first seasonal MAPPER school http://www.mapper-project.eu/web/guest/first-

seasonal-school we have measured usability of MaMe, MAD and GridSpace

Experiment Workbench tools based on [BROOKE]. The obtained average SUS score

for the tools was 68 points (for 100 possible; standard deviation was 18) . The

average was calculated from answers from most active 10 participants. The most

common request of the users was to allow changing parameters of application

submodules directly in MAD which is done in second prototype (See Section 5.1.2).

 statistics of successful execution of complete multi-scale simulations. Currently

we are applying our tools within the MAPPER project community - all xMML of

applications are stored in xMML repository and are available through MAD

https://gs2.mapper-project.eu/mad (press "open from repository" button). The status

is described in Tab. 4. Details can be found in D 7.2

Tab. 4. Status of using WP8 tools in MAPPER applications

Application

name

Field Status of using WP8 tools

Instent physiology modules registered in MaMe, connected in

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 31 of 34

restenosis MAD, executed in EW -using SSH and QCG

executors; succesfully applied and described

in [BORGDORFFb]

Irrigation canals hydrology modules registered in MaMe, connected in

MAD, executed in EW -using SSH and QCG

executors; succesfully applied in

[BELGACEM]- used as a basis for a tutorial

used during first seasonal MAPPER school in

London http://www.mapper-

project.eu/web/guest/mad-mame-ew

clay-polymer

nanocomposites

Nano-material

science

modules registered in MaMe, connected in

MAD, executed in EW by SSH executor and

AHE executor

reverse

engineering of

gene-regulatory

networks

Computational

Biology)

modules registered in MaMe, connected in

MAD, tests of execution in EW

equilibrium-

stability

fusion modules registered in MaMe, connected in

MAD, executed in EW

transport

turbulence

equilibrium

workflows

fusion modules registered in MaMe, connected in

MAD, executed in EW

Heme LB physiology Modules registered in MaMe; application is

currently using of high performance MPWide

communication library, which is planned to be

integrated with MUSCLE (supported by

GridSpace) in the third year. As a result,

usage of MAD and GridSpace is expected in

the third year.

 number of single-scale models incorporated and used within MAPPER

infrastructure measured by taking information from models’ registry developed in

Task 8.2: At present 20 single-scale models, 25 mappers and two filters are already

registered in the model registry (MaMe), representing almost all MAPPER

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 32 of 34

applications in addition to a test application. This number can be monitored online at

http://gs2.mapper-project.eu/mame

 number of new scientific results from applications created by MAPPER tools

measured by number of publications in well recognized journals/conferences;

List of publications:

o using WP8 tools with In-stent restenosis application [BORGDORFb]

o using WP8 tools with clay-polymer nanocomposites application

[GROEN][SUTER]

o using WP8 tools with Irrigation Canals application [BELGACEM]

o the paper on WP8 tools [RYCERZ]

 mean time required to train a new user to use MAPPER tools measured during

Seasonal Schools in task 2.4. The tools tutorial done during first MAPPER seasonal

school7 was successful and consisted of 30 minutes presentation and 60 minutes

hands-on exercises available on http://www.mapper-project.eu/web/guest/mad-

mame-ew. There were no major problems in using the tools by school participants

according to their responses to SUS survey. In Fig. 10 we show their answers to the

sample questions of that survey showing their opinion if it was easy to learn using the

tools.

8 Conclusions

This deliverable presents the second prototype of multiscale programming and execution

tools. It shows the current status of implementation according to the design presented in D

8.1. and changes in comparison to first prototype described in D8.2.

7
 http://www.mapper-project.eu/web/guest/first-seasonal-school

Fig. 10. Sample user answers to the SUS questions during first seasonal MAPPER

school.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 33 of 34

We conclude that the proposed environment has proven to be quite useful and can help

scientists to build their multiscale applications as described in Section 7. The use of common

description language (MML) enables development of different applications from a single set

of modules and switching between different versions of modules offering specific features.

The accessibility of web based tools enables sharing of applications among scientists

working on the same area of expertise. Additionally, support for interactivity (i.e. user

interaction during application execution) is provided. As can be seen in the usage of tools

within MAPPER project community is successful in various research fields.

The current application status can be found in D 7.2. In the next years of the project the

presented prototype will be enhanced to provide full functionality described in D 8.1.

9 References

[BELGACEM] M. Ben Belgacem, B. Chopard and A. Parmigiani "Coupling method for

building a network of irrigation canals on distributed computing environment" to be published

in Proceedings of 10th International Conference on Cellular Automata for Research and

Industry, ACRI 2012, Santorini Island, Greece, September 24-27, 2012. Series: Lecture

Notes in Computer Science, Vol. 7495

[BORGDORFFa] Bergdorf, J., Falcone, J.-L., Lorenz, E., Bona-Casas, C., Chopard, B., and

Hoekstra, A. G. Foundations of Distributed Multiscale Computing: Formalization,

Specification, Analysis and Execution. Journal of Parallel and Distributed Computing,

submitted, 1–31.

[BORGDORFb] Joris Borgdorff, Carles Bona-Casas, Mariusz Mamonski, Krzysztof Kurowski,

Tomasz Piontek, Bartosz Bosak, Katarzyna Rycerz, Eryk Ciepiela, Tomasz Gubala, Daniel

Harezlak, Marian Bubak, Eric Lorenz, Alfons G. Hoekstra: A Distributed Multiscale

Computation of a Tightly Coupled Model Using the Multiscale Modeling Language. Procedia

CS 9: 596-605 (2012)

[BROOKE] John Brooke Usability evaluation in industry, SUS - a quick and dirty usability

scale (CRC Press, Boca Raton, FL), pp 189–194 (1996)

[ERMENTROUT] Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems:

A Guide To Xppaut for Researchers and Students. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 2002.

[FUNAHASHI] Funahashi, A., Morohashi, M., Kitano, H. & Tanimura, N.: CellDesigner: a

process diagram editor for gene-regulatory and biochemical networks. BIOSILICO 1, 159 –

162, 2003.

MAPPER – 261507

D8.2-SecondPrototype-CYF-v1.1 Page 34 of 34

[GROEN] D. Groen, J. Borgdorff, S. Zasada, C. Bona-Casas, J. Hetherington, R. Nash, A.

Hoekstra, P. Coveney, A Distributed Infrastructure for Multiscale Biomedical Simulations,

accepted by the Virtual Physiological Human Conference 2012.

[GUBALA] T. Gubała, M. Bubak, P.M.A. Sloot; Semantic Integration of Collaborative

Research Environments, in: M. Cannataro (Ed.) Handbook of Research on Computational

Grid Technologies for Life Sciences, Biomedicine and Healthcare, Chapter 26, pp. 514-530,

Information Science Reference, 2009

[HOOPS] Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L.,

Mendes, P. & Kummer, U.: COPASI – a COmplex PAthway Simulator, Bioinformatics,

22(24):3067–3074, 2006.

[MENDES] Mendes, P., Sha, W., Ye, K.: Artificial gene networks for objective comparison of

analysis algorithms, Bioinformatics 2003, 19(90002): 122-129, 2003.

[RYCERZ] Katarzyna Rycerz, Eryk Ciepiela, Tomasz Gubala, Daniel Harezlak, Grzegorz

Dyk, Marian Bubak, Joris Borgdorff and Alfons G. Hoekstra: An Environment for

Programming and Execution of Multiscale Applications submitted to TOMACS journal

[SAVAGEAU] Savageau, M.A.: Biochemical systems analysis: A study of function and design

in molecular biology, Addison-Wesley, Reading, Mass., 1976.

[SUTER] J. Suter, D. Groen, L. Kabalan and P. Coveney: Distributed Multiscale Simulations

of Clay-Polymer Nanocomposites, Materials Research Symposium, San Francisco, United

States of America, April 2012.

[VOHRADSKY] Vohradský, J. Neural network model of gene expression. The FASEB

Journal 15, 846, 2001.

[VOIT] Voit, E.O. & Schwacke, J.H.: Understanding through modeling: A historical

perspective and review of biochemical systems theory as a powerful tool for systems biology.

Konopka, A.K. (editor), Systems biology: Principles, methods and concepts, pp. 28-77, 2007.

